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Abstract 

A comprehensive and systematic electrical activation study of Si-implanted 

gallium nitride (GaN) was performed as a function of ion implantation dose, anneal 

temperature, and implantation temperature.  Additionally, acceptor-implanted GaN was 

also investigated.  Temperature-dependent Hall effect measurements from 10-800 K and 

photoluminescence (PL) spectra taken from 3-300 K were used to characterize the 

samples.  GaN wafers capped with 500 Å AlN were implanted at room temperature and 

at 800 oC with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed 

from 1050 to 1350 oC for 5 min to 17 sec in a flowing nitrogen environment. 

Generally, the higher the Si dose, the greater the activation efficiency at any given 

anneal temperature.  The optimum anneal temperature for samples implanted with higher 

doses (≥1x1015 cm-2) is around 1350 oC, exhibiting nearly 100% electrical activation 

efficiency.  Even the sample implanted with the lowest dose of 1x1013 cm-2 shows an 

electrical activation of 40% after annealing at 1350 oC.  The mobilities and carrier 

concentrations increase with anneal temperature for every dose in spite of the increased 

ionized impurity scattering from an increased number of active donors.  The highest 

room-temperature mobility is 250 cm2/V·s on the sample implanted at room temperature 

with a dose of 1x1013 cm-2 after annealing at 1350 oC.  Even the sample implanted at 800 

oC with the highest dose of 5x1015 cm-2 had a room-temperature mobility of 105 cm2/V·s 

after annealing at 1300 oC.  The data show that Si implantation at 800 oC did not offer 

decisive advantages over implantation at room temperature. 

PL spectra measured as a function of anneal temperature showed that Si 

implantation damage was almost completely recovered after annealing at 1350 oC.  Also, 

 xiv 



temperature-dependent PL spectra revealed that the yellow luminescence (YL) plaguing 

nearly all Si-doped GaN is not caused by a shallow Si donor, but rather a much deeper 

level.  Samples implanted with Si at both room temperature and 800 oC show that the 

3.29 eV donor-to-acceptor pair (DAP) peak, which is widely believed to involve a 

shallow donor, thermally quenches much more rapidly than the 2.2 eV YL band. 

Additionally, GaN wafers capped with 500 Å AlN were implanted at 25, 500, and 

at 800 oC with Mg, Mg+Si, Mg+C, Mg+P, Mg+O, C, Li, and Li+P at doses ranging from 

1x1014 to 5x1015 cm-2 and annealed from 1100 to 1350 oC.  All of the Mg-implanted and 

most of the Mg-coimplanted GaN samples became extremely resistive, and did not show 

definite p-type conductivity even after annealing at 1350 oC.  Furthermore, the samples 

did not show any p-type conductivity and remained highly resistive even at a sample 

temperature as high as 800 K.  A dominant 2.36 eV green luminescence (GL) band 

observed in the PL spectra of all Mg implanted samples is attributed to a deep DAP 

transition with at least one level caused by a Mg-related complex.  These Mg-related 

deep complexes, which form independent of the various coimplants or the implantation 

temperature, remain thermally stable even at anneal temperatures as high as 1350 oC, and 

are mainly responsible for the inefficient electrical activation of Mg acceptors implanted 

into GaN.

 xv 



 
 

ELECTRICAL ACTIVATION STUDIES 

OF ION IMPLANTED GALLIUM NITRIDE 

 

I. Introduction 
 
 
High-temperature, High-power, High-frequency, and High-radiation Electronics 

 Electronic devices find applications seemingly everywhere.  Where they are used 

and how well they perform depend not only on their design (e.g., geometry and 

fabrication process), but primarily on the fundamental material properties of the 

semiconductors from which they are fabricated.   The material workhorse of the 

electronics industry is unquestionably silicon.  The preeminence of silicon is due to its 

abundance (i.e., the raw material is inexpensive), excellent general-purpose material 

properties, and processing maturity.  Since the early 1950s, researchers and 

manufacturers have been growing and fabricating devices with silicon so that virtually all 

aspects of material physics and device processing are fully understood and exploited.  

Currently, ultra pure silicon ingots (impurity concentrations < 1012 cm-3) are grown 300 

mm (12”) in diameter with ultra low defects ~ 1 cm-2 (Dreike et. al., 1994).   Although 

the ground floor of the electronics industry was forged with silicon, in many key 

applications silicon has fundamental limitations imposed by its material properties.  

Silicon is unable to meet the ever-increasing demands of high-temperature, high-power, 

high-frequency, and high-radiation electronics.  The material properties of several 

common semiconductors are shown in Table 1. 
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Table 1. Comparison of Semiconductor Material Properties 
Property Si GaAs InP 4H-SiC GaN Diamond 
Bandgap at 
300 K (eV) 

1.12 
(I) 

1.424 
(D) 1.344 (D) 3.26 

(I) 
3.44 
(D) 

5.47 
(I) 

Dielectric 
constant 11.7 (dc) 13.2 (dc) 

10.9 (¶) 
12.4 (dc) 
9.66 (¶) 

9.6 (dc) 
6.7 (¶) 

8.9 (dc) 
5.35 (¶) 5.57 (dc) 

Thermal 
expansion 
(x10–6 KÿDa/a) 

2.56 6.86 4.5 4.2 5.59 0.08 

Lattice 
constant (Å) 5.431 5.653 5.869 3.073 (a) 

10.05 (c) 
3.189 (a) 
5.185 (c) 3.567 

mc*/mo  1.18 0.063 0.077 - 0.22 0.2 
mv*/mo  0.81 0.53 0.64 - 0.8 0.25 
Bulk Mobility 
  Electron 
  Hole 

 
1450 
500 

 
8500 
400 

 
4600 
150 

 
1140 
50 

 
900 
150 

 
2200 
1600 

Saturation 
velocity (x107 
cm/sec) 

1.0 1.0 - 2.0 2.5 2.7 

Breakdown 
field (MV/cm) 0.3 0.4 - 3 5 10 

Thermal 
conductivity 
(W/cmÿK) 

1.5 0.46 0.68 4.9 1.3 22 
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(oC) 1412 1238 1070 Sublimes 

T > 1827 
Sublimes 
T > 1300 3826 

 An electronic device operating in a high-temperature regime fails when it no 

longer functions as designed.  There are several likely failure mechanisms: 

electromigration of conductors, interdiffusion of contacts, corrosion, thermally induced 

stress, and extrinsic to intrinsic conversion.  The latter occurs when the intrinsic carrier 

concentration becomes comparable to or exceeds the extrinsic  concentration, resulting in 

excessive reverse-biased p-n junction leakage currents, threshold voltage shifts, or 

latchup.  Leakage currents limit Si device operation to under 300 oC, and to under 200 oC 

in some device designs.  Although silicon-on-insulator (SOI) technology greatly reduces 
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Figure 1. Intrinsic carrier concentration for Si, GaAs, and GaN as a function of 
temperature. 

junction leakage, SOI devices are still limited to 300 oC operation.  Figure 1 shows the 

intrinsic carrier concentration for Si, GaAs, and GaN as a function of temperature.  Even 

at 800 oC, the intrinsic carrier concentration of GaN remains several orders of magnitude 

below that of either Si or GaAs as well as far below the typical doping concentrations of 

n- and p-regions in semiconductor devices. 
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 The ambient temperature range over which many electronic devices are rated to 

operate is –55 to 125 oC.  This range originated from an obsolete MIL-STD that 

attempted to encompass the temperature range that a generic electronic component would 

likely see in worldwide combat.  However, many potential military as well as non-

military applications call for electronic components to operate reliably at temperatures 

exceeding 125 oC.  Such applications involve placing sensors and controlling electronics 

within harsh or caustic environments not only to improve the accuracy of the data 

collected, but to make the system lighter and the control process faster and more accurate. 

The control process would include signal amplification, conditioning, processing, and 

actuating.  The following are applications requiring high-temperature electronics: drilling 

heads for oil, gas, and geothermal exploration, automotive and aerospace engines, heavy 

equipment, heavy vehicle anti-lock brakes, nuclear and space environments, distributed 

control systems, power systems, phased array radars, and conformal electronics on 

aircraft skins.   

 To meet these demands device designers are always searching for the optimum 

material.  Fifteen years ago, GaAs and InP were considered immature and novel material 

technologies.  But GaAs and InP have several material properties that give them an 

advantage over silicon in some applications, and today both of these materials are mature 

with widespread commercial devices satisfying high-performance military and 

commercial requirements.  To assist in the selection of the best material for a given 

application, device designers have derived certain figures of merit (FOM).  These FOM 

are calculated from the semiconductor material properties that have the largest impact on 

device performance. 
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 There are four common FOM stressing performance in different applications; 

however, in each case the larger the FOM value, the greater the expected device 

performance.  The Johnson FOM (JFOM) provides an indication of which materials are 

best for power amplifiers.  The Keyes FOM (KFOM) emphasizes materials for high-

speed digital integrated circuits.  The Baliga FOM (BFOM) identifies which materials are 

best in minimizing conduction power losses in lower-frequency, high-power switching 

systems, whereas the Baliga high-frequency FOM (BHFFOM) indicates the best material 

for high-frequency power systems where switching losses due to the charging and 

discharging of input capacitance dominates.  These FOM reveal that the critical field (i.e., 

dielectric strength), saturation velocity, mobility, energy bandgap, thermal conductivity, 

and dielectric constant are the best predictors of device performance in extreme 

applications.  Table 2 compares these FOM normalized to silicon for several 

conventional and wide bandgap semiconductors (Chow and Tyagi, 1994). 

Table 2. Figures of merit for several semiconductor materials normalized to silicon 

 

 Si InP GaP GaAs GaN 6H-SiC 4H-SiC 
JFOM 1.0 13 37 11 790 260 410 
KFOM 1.0 0.72 0.73 0.45 1.8 5.1 5.1 
BFOM 1.0 10 16 28 910 90 290 
BHFFOM 1.0 6.6 3.8 16 100 13 34 

Wide Bandgap Semiconductors 

 Wide bandgap semiconductors (WBG) possess several material properties that 

allow them to outperform conventional semiconductors in many extreme applications.  

Many of the attractive intrinsic material properties of WBG are physically related to the 

wide bandgap.  The most obvious is their ability to operate at much higher temperatures 
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before becoming intrinsic or suffering from thermally generated leakage current.  

Generally, WBG have higher thermal conductivities that allow them to quickly dissipate 

junction heat and thus function more efficiently and reliably in high-temperature, high-

power density device applications.  The ambient temperature in which any electrical 

device works is generally much cooler than the actual temperature of the device due to 

internal power losses and current density induced self-heating.  This concept is 

universally evident in the importance of heat sinks and adequate cooling air for silicon 

CMOS digital processors operating at 500 MHz to 1.5 GHz even in air-conditioned 

offices.  As a result of their wider bandgaps, WBG have higher breakdown fields (Vbr ∂ 

Eg
3/2), i.e., the maximum internal electric field strength before the onset of junction 

breakdown.  This allows WBG to operate as high-power amplifiers, switches, or diodes.  

The high breakdown field also allows further device miniturization beyond what is 

possible with conventional semiconductors, because the internal fields increase linearly 

as device dimensions become smaller.  Another intrinsic material property that can be 

related to the bandgap is the dielectric constant.  The dielectric constant of a non-metallic 

crystal is a measure of how well the material’s internal charge distribution can be 

displaced or polarized in the presence of a macroscopic electric field.  The lower high-

frequency dielectric constant of WBG reduces device parasitic capacitance allowing more 

efficient operation as RF and millimeter-wave amplifiers.  The higher saturation 

velocities of WBG also allow them to operate at higher-frequencies than their 

conventional cousins.  Due to the larger cohesion energies of their constituent atoms, 

WBG are chemically robust materials, less vulnerable to attack in caustic environments, 

and more resistant to radiation damage.  The inert nature of WBG makes them less 
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susceptible to unwanted impurity in-diffusion, as well as dopant out-diffusion and 

redistribution that would otherwise degrade device reliability and performance. 

 
Gallium Nitride 

 Currently, GaN is one of the most widely studied semiconductors for advanced 

electrical and optical device applications due to its outstanding material properties as seen 

in Table 1.  Though still in their infancy, the group III-nitrides, particularly GaN, have 

experienced rapid progress in material growth, processing, and device technology over 

the past decade.  As experienced with most semiconductors however, initial progress was 

slow.  In 1932, GaN was synthesized in powder form, and in 1938 small needles of GaN 

were synthesized.  Not until 1969 was GaN first grown on a sapphire substrate using 

hydride vapor phase epitaxy (HVPE).  Two years later GaN was grown epitaxially via 

metal-organic chemical vapor deposition (MOCVD), and in 1974 by molecular beam 

epitaxy (MBE).  Epitaxial layer quality through the 1970s and much of the 1980s was 

rather poor due to the lack of a lattice-matched substrate.  These early epilayers were 

always unintentionally doped n-type (n ¥ 1x1017 cm-3), resulting from growth defects or 

impurities inadvertently introduced during growth (Monemar, 1998; Pearton et. al., 1999; 

Jain et. al., 2000).  Epilayer quality began to improve through the use of a two-step 

growth method developed by Yoshida et. al. in 1983 (Yoshida et. al.,1983).  By first 

growing a thin AlN buffer layer on the sapphire substrate, most of the mismatch-induced 

dislocations are confined to a thin AlN/GaN interfacial region rather than throughout the 

GaN epilayer.  Despite the progress in GaN epilayer quality, material doped with 

acceptors remained at best highly resistive until 1989 when Amano et. al. produced p-
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type GaN via low energy electron beam irradiation (LEEBI) of Mg-doped GaN (Amano 

et. al., 1989).  The energy provided by the electron beam depassivated the Mg acceptors 

by breaking the Mg—H bonds formed during MOCVD growth.  Presently, the same 

effect is more commonly achieved via thermal annealing around 800 oC. 

Today, GaN epilayers are almost entirely grown on either 2” sapphire (b-Al2O3) 

or 6H-SiC substrates.  Sapphire wafers are much less expensive and are insulating.  SiC, 

however, has a much better lattice match to GaN (3.5% mismatch versus 13% mismatch 

for sapphire) and is about ten times more thermally conductive than sapphire, which is 

important for high-power device applications.  Currently, the largest difference between 

GaN grown on sapphire or SiC substrates is the threading dislocation concentration of 

either ~2x109 cm-2 or ~5x108 cm-2 s, respectively, due primarily to lattice mismatch 

(Eastman et. al. 2001).  Although intense research efforts are underway to develop a 

practical technique for bulk growth of GaN, MOCVD and MBE are the main techniques 

for most GaN layers.  Due to it’s slight advantage in maturity, MOCVD is more popular 

for group III-nitride growth with an optimum growth temperature for GaN around 1050 

oC and typical growth rate of about 2 mm/hour.  The best MBE processes typically use 

NH3 as the nitrogen source at a growth temperature of 900-1000 oC and a growth rate of 

1 mm/hour.  Two techniques receiving increased attention are HVPE and epitaxial lateral 

overgrowth (ELOG).  The growth rate of HVPE is typically 10 mm/hour allowing for not 

only thick epilayers, but lower dislocation density free-standing thick GaN layers after 

the substrate has been removed.  During ELOG of GaN, thin strips of SiO2 are patterned 

on a GaN buffer layer.  GaN growth continues selectively on the GaN buffer layer then 

laterally over the SiO2 strips.  When the SiO2 mask has been overgrown, the GaN over 
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the SiO2 has a much lower dislocation density (Monemar, 1999).  The ELOG technique 

was used to demonstrate Nichia’s 10,000 hour blue laser diode in 1997. 

 Despite commercially available blue LEDs and laser diodes, GaN material and 

device technology lags several years behind its main WBG competitor, SiC.  Recently, 

CREE announced commercially available 3” n-type 4H- and 6H-SiC substrates (2001).  

However, GaN can offer a much greater potential than SiC for some advanced high-

performance electrical devices as seen in the FOM comparisons of Table 2.  Additionally, 

the group III-nitride family possessing direct bandgaps from 1.9-6.2 eV presents an 

abundance of ternary heterostructures for novel electrical and optical devices.  In addition 

to laser and light-emitting diodes, a wide variety of electronic devices have already been 

fabricated using GaN: heterojunction field effect transistors (HFETs), heterojunction 

bipolar transistors (HBTs), and high electron mobility transistors (HEMTs) (Ohno and 

Kuzuhara, 2001; McCarthy et. al., 2001; Wu et. al., 2001). 

Many such devices fabricated with the more mature GaAs material system enjoy 

widespread use throughout the military and commercial sectors.  The success of GaAs is 

due largely to a coordinated research and development effort called the GaAs microwave 

and millimeter-wave monolithic integrated circuit (MIMIC) program begun in 1987.  

Although there exists an enormous GaAs manufacturing infrastructure, GaAs integrated 

circuits can no longer meet the advancing requirements of tomorrow’s weapon systems 

(Dixon, 2001).  Clearly, electronics is a dominant force multiplier in these weapon 

systems, whose requirements are driven by affordability and operational superiority.  The 

Department of Defense 2001 Basic Research Plan stresses the need for wide-bandgap 

semiconductor research to satisfy critical requirements in communications, ultraviolet 
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detectors, high-temperature engine controls, as well as high-power/high-frequency radars 

for target tracking, acquisition, and fire-control. 

In spite of GaN’s many advantages, the fabrication of successful devices must 

still overcome some important problems such as efficient doping and selected area 

doping.  Since the group-III nitrides are very chemically inert, thermal diffusion doping 

in these materials is impractical due to the extremely low diffusivity of impurity species. 

In addition to in-situ doping of GaN during crystal growth, an alternative method of 

doping GaN is by ion implantation. Although this doping technique has many advantages 

including independent control of the doping level, selective area doping, and the ability 

of fabricating planar devices and self-aligned structures, one of the major problems 

associated with this technique is the need to anneal out the implantation damage-related 

crystalline defects, and electrically activate the implanted ions.  Although ion 

implantation has become a mature technology for Si and GaAs doping, the technique is 

less well developed for GaN.   This research effort has performed a comprehensive and 

systematic electrical activation study of Si-implanted GaN as a function of ion 

implantation dose, anneal temperature, and implantation temperature.  Additionally, 

acceptor-implanted GaN was investigated.  Both objectives were pursued with a goal to 

increase understanding of the implant activation process, and the defect levels associated 

with this process so that ion-implanted GaN can be exploited in advanced electrical and 

optical device applications. 
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II. Semiconductors, Energy Bands, and Impurities 

 
Historical Perspectives 

In 2001, the world has become virtually dependent on personal computers, the 

Internet, cellular phones, compact disks (CDs), personal digital assistants (PDAs), 

laptops, notebooks, digital versatile disks (DVDs), and MP3 players for information, 

business, and recreation.  None of these seemingly indispensable items would exist if it 

were not, in part, for the underlying fundamental research in solid-state physics, and 

specifically semiconductor materials. 

 Research in semiconductors was evident as early as 1833 when Michael Faraday 

discovered the semiconducting properties of silver sulfide (Ag2S).  Although Ferdinand 

Braun’s invention of the solid-state rectifier using a point contact to lead sulfide (PbS) 

occurred 30 years before John Fleming’s invention of the vacuum tube diode, early 

complex electrical machines were made using vacuum tube technology.  Vacuum tube 

technology dominated electronics largely due to a lack of understanding of solids.  In the 

1920s, the theory of quantum mechanics was developed, which lead to a more 

comprehensive understanding of the electronic band structure of metals, insulators, and 

semiconductors.  Driven by the insights afforded by quantum mechanics, research in 

semiconductors lead to the historic invention of the point-contact bipolar junction 

transistor in 1947 by the Bell Lab team of William Shockley, Walter Brattain, and John 

Bardeen.  The implications of a solid-state transistor were so enormous to 

communications and radar technology that the military considered classifying the Bell 

Lab discovery as top secret (Brinkman et. al., 1997; Barbour). 
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In the quest to control electrical information at higher frequencies, solid-state 

transistors gradually supplanted vacuum tubes.  Since 1947, continual research has been 

critical to understanding the structural, electrical and optical properties of various 

semiconductor materials and in exploiting these properties in a host of novel electronic 

devices.  Currently, electronic devices are found in everything from a simple toaster, to 

worldwide communication systems, to cutting edge military weapon systems.  What 

accounts for the prevalence of semiconductor materials in our world today is our ability 

to accurately and reliably control their electrical and optical properties.  The remainder of 

this chapter provides a brief background on the theory of semiconductors including 

periodic potentials, energy bands, and carrier concentrations. 

 
Crystal Structure 

 In 1913, the science of X-ray crystallography was founded by a father and son, 

both named William Bragg.  Their work on X-ray diffraction provided the first empirical 

evidence on how atoms are arranged in solids.  A Bravais lattice is an infinite array of 

discrete points that appears the same when viewed from any of these points.  There are 14 

unique Bravais lattices and 7 crystal symmetry groups that fully describe the 3-

dimensional geometry of the periodic arrays of all crystalline solids.  Nearly all 

semiconductors crystallize in either the cubic or hexagonal symmetry groups.  The 

zincblende structure is comprised of two interpenetrating face-centered cubic Bravais 

lattices as found in many III-V semiconductor compounds containing Ga or In, along 

with P, As, or Sb.  The wurtzite structure is comprised of two interpenetrating hexagonal 

Bravais lattices common in many II-VI semiconductor compounds containing Zn or Cd, 
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along with S, Se, or Te.  The zincblende and wurtzite structures are shown in Figure 2.  

Interestingly, both structures are based on tetrahedral bonding; the only difference is that 

in wurtzite structures alternating planes of tetrahedra are mirror images of each other, 

while in zincblende structures alternating planes of tetrahedra are rotated 60o.  In addition 

to their structure, crystalline solids are further characterized by their lattice constants that 

define the size of their unit cell.  When the unit cell is repeated in real space, the 

macroscopic crystal is generated.  A unit cell possessing cubic symmetry, such as that 

shown in Figure 2 (a), has a single lattice constant, a, whereas a hexagonal unit cell is 

described by two orthogonal lattice constants, a and c.  Closely matching the lattice 

constants in the growth plane of two semiconductors is important when one 

semiconductor is heteroepitaxially grown on another. 

 
Crystal Growth 

 Most bulk semiconductor single crystals are grown under strict thermodynamic 

equilibrium conditions where high purity sources of the constituent atoms are made to 

crystallize by bringing them together at a certain temperature and pressure, then allowing 

them to cool at a precise rate.  The resulting bulk crystals are then cut into thin wafers 

and polished for further processing.  Generally, semiconductor devices are fabricated 

from thin layers, on the order of microns, of single crystal semiconductors that are 

epitaxially grown on these bulk substrate wafers.  The surface of the substrate wafer 

serves as a crystal template when growing the epitaxial layers.  Although epitaxial layers 

nearly always possess the same crystal structure as the substrate, their lattice constants 

can differ significantly, (i.e., greater than 10%).  During growth, the epitaxial layer will 
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(a) (b) 

Figure 2. Semiconductor crystal unit cells:  (a) cubic symmetry represented by zincblende 
GaAs with lattice constant a, and (b) hexagonal symmetry represented by wurtzite CdS 
with lattice constants a and c (Sze, 1981:8,9).  

experience biaxial compressive or tensile strain proportional to the extent of lattice 

mismatch.  As the growth continues, there exists a critical thickness dependent on both 

the lattice mismatch and the material, below which the minimum energy state of the 

heteroepitaxial system is achieved by strain.  Such an epitaxial layer is called 

pseudomorphic as it assumes the lattice constant of the substrate.   Above this critical 

thickness, energy is minimized by the formation of dislocation lines that can act as free 

carrier recombination centers or electrically active levels within the bandgap of the 

epitaxial device layer (Bhattacharya, 1994:21-25).  Exploiting semiconductor material 

properties to optimize electrical and optical device performance requires an 

understanding of energy band structure. 
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Energy Bands 

All crystalline solids can be classified by their conductivity as metals, insulators, 

or semiconductors.  The conductivity of all such materials is fundamentally dependent on 

the interrelationships and occupancy of their electronic energy levels or bands.  The 

electronic energy levels of individual atoms quantify how tightly each of the atom’s 

electrons is held in position around the nucleus.  The inner or core electrons are very 

tightly bound and thus have large binding energies, whereas the outer or valence 

electrons, due to the screening effects of the core electrons, are held less tightly.  When 

atoms bond to form crystalline solids, the discrete electronic energy levels of the 

individual atoms spread out into bands of levels.  Because electrons are fermions, no two 

electrons can occupy the same exact energy level, thus a band of energies is needed to 

hold all the electrons from a particular atomic orbital when a macroscopic solid is 

formed. 

In addition to responding to the multitude of other electrons in a solid by forming 

energy bands, the electrons also respond to the periodic potential resulting from each 

atom in the solid residing at a crystal lattice position.  Each individual electron in the 

crystal senses the coulombic attractive force exerted on it by each of the positively 

charged ion cores.  The interaction of the electrons with this periodic potential determines 

the set of energy levels that the electrons can occupy.  Due to the difficulties in solving a 

problem involving so many electrons and ion cores, the energy levels of a macroscopic 

solid cannot be analytically determined; however, quantum mechanics allows us to 

approximate these energy bands to a reasonable degree of accuracy. 
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The simplest and perhaps most important case to consider is that of a free electron 

which experiences no potential either from other electrons or ion cores.  The energy 

levels that a single free electron can occupy are exactly determined by solving 

Shrödinger’s wave equation  

 2( ) ( ) ( ) ( )
2 o

H U
m

ψ ψ = − ∇ + =  
r r r Eψ r  (1) 

with the periodic potential, U(r), identically zero.  H is the Hamiltonian operator, y(r) is 

the single electron wave function, ћ is the reduced Plank constant, mo is the electron’s 

mass, and E is the energy of the electron.  The solutions to this equation are plane waves 

of the form 

 ( ) i
k eψ ⋅= k rr , (2) 

where k is the electron’s wave vector and r is the positional vector.  The eigenvalues 

corresponding to the eigenstates of equation (2) are then 

 
2 2

2 o

kE
m

= . (3) 

 Clearly, the dispersion relation describing the free electron’s energy in one-

dimensional k-space is a parabola, and in 3-D k-space is spherical.  In an actual 

crystalline solid, none of the electrons is truly free; however, due to the screening effect 

of the core electrons on each nucleus, the valence electrons can be considered nearly free, 

or under the influence of only a weak periodic potential.  The allowed values of k are thus 

dependent on the periodicity of the crystal lattice.  Considering many nearly free 

electrons in a crystal, there are multiple reciprocal lattice vectors, K, in 3-D k-space at 

which point the corresponding energies of multiple bands are equivalent and therefore 
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degenerate.  In the presence of a weak periodic potential, the actual allowed electron 

energy values, E, will differ from the free electron values as a function of the periodic 

potential, U.  In an actual crystal, a range of energies surrounding the degenerate values 

will be shifted by an amount on the order of U from the free electron energy values.  

This shifting of the energy bands in k-space occurs near Bragg planes, or planes of crystal 

symmetry.  As one approaches a Bragg plane in k-space, the higher energies are shifted 

up and the lower energies are shifted down.  This shifting produces an energy bandgap, 

or forbidden region, whose magnitude is determined by the periodic potential of the 

crystal lattice  (Ashcroft and Mermin, 1976:155).  Figure 3 shows the energy band 

structure of GaN in k-space.  The letter ordinates in Fig. 3 represent points of symmetry 

within the first Brillouin zone of the hexagonal symmetry group.  The E(k) dispersion 

relation for GaN is mapped for directions of high-symmetry is this band diagram.  The 

Brillouin zone center is always the Γ point as shown in Figure 4. 

 The classification of crystalline solids as metals, insulators, or semiconductors is 

universally based on the magnitude of this energy bandgap.  In metals, the metallic 

bonding results in an appreciable density of electrons in the regions between the ion 

cores.  This density is likely to cause broad energy bands and appreciable band overlap in 

k-space.  When an energy band fully populated with electrons overlaps with an empty or 

partially full band, conduction readily occurs because there are many unoccupied states to 

which an electron can move.  In I-VII ionic solids, a full and stable ns2np6 shell 

configuration is achieved; there are no loosely held valence electrons, and there is a large 

periodic potential due to the highly ionic nature of the crystal.  Consequently, there is a 

large energy bandgap between the highest occupied band and lowest unoccupied band so 
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Figure 3. Energy band structure of wurtzite GaN in k-space showing various points of 
crystal symmetry and a direct bandgap at the G point (Madelung, 1996:87). 

that a large amount of energy must be provided for conduction to occur.  Insulators are 

solids in which the bandgap is on the order of 6 eV or greater. 

 Semiconductors are solids in which the bandgap ranges from the order of few 

meV to greater than 3 eV.  Such solids include crystals of II-VI (e.g., ZnS, CdTe), III-V 

(e.g., AlxGa1-xAs, InP), and IV-IV (SiC, Si1-xGex) compounds that have an increasingly 

covalent nature, with group IV elemental crystals being perfectly covalent.  In each case, 
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Figure 4. Hexagonal crystal structure showing points and directions of high-symmetry. 

a full and stable ns2np6 shell configuration is achieved, but only via an increased electron 

density along covalent bond directions.  In II-VI and III-V compounds the difference in 

electronegativities between the anion and cation is a general measure of the ionicity of 

the bonding with the more ionic compounds having larger energy bandgaps.  Because 

there exists such a wide range of energy bandgaps in semiconductors, this classification is 

often further broken down into narrow bandgap and wide bandgap semiconductors.  

Narrow bandgap semiconductors (e.g., Hg1-xCdxTe, InSb) have energy gaps less than 1 

eV and have received widespread use as infrared detectors.  Wide bandgap 

semiconductors (e.g., GaN, SiC) are those with bandgaps larger than about 2.2 eV, and 

are advantageous as blue-ultraviolet LEDs/lasers or ultraviolet detectors. 
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Regardless of the magnitude of their bandgaps, all pure semiconductors are 

insulators at absolute zero temperature.  The highest occupied band (valence band) is full 

and the band just above the bandgap (conduction band) is completely empty.  In addition 

to the magnitude of their bandgaps, another important characteristic of all semiconductors 

is whether their bandgap is direct or indirect.  A direct bandgap semiconductor is one in 

which the valence band maxima and the conduction band minima occur at the same point 

in k-space, k = 0.  In an indirect bandgap, the conduction band minima occur at k ≠ 0.  In 

these semiconductors, all energy transitions across the bandgap must be accompanied by 

a quanta of lattice vibration (i.e., a phonon) due to the requirement for conservation of 

crystal momentum, ћk.  One of the more significant implications is that lasers cannot be 

fabricated from indirect semiconductors.  Figure 5 shows the relationship between 

bandgap energy and lattice constant for several direct and indirect semiconductors that 

crystallize in either the cubic or hexagonal structures.  Also identified in this figure is the 

wavelength of the minimum energy photon required to excite an electron across the 

bandgap.  The majority of semiconductors can absorb photons from the visible portion of 

the electromagnetic spectrum, while the wide bandgaps are transparent to visible light. 

 Due to the periodic potential of the semiconductor lattice, electrons (or holes) are 

not truly free and their real momentum is not a constant of motion, as is the crystal 

momentum.  Knowing that the time rate of change of crystal momentum equals the force 

on the electron, -eE, where e is the elementary charge, and E is the electric field vector, 

one can easily derive an expression for the effective mass of an electron (or hole) in the 

conduction (or valence) band (McKelvey, 1966:218): 
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direct and indirect semiconductors that crystallize in either the cubic or hexagonal 
structures. 
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The effective mass of an electron, seen here to be proportional to the inverse curvature of 

the conduction band dispersion relation, is generally less than the rest mass of an 

electron. 

 
Semiconductor Statistics 

 An important expression in semiconductor statistics is the density of energy states 

per unit energy and unit volume of k-space.  Due to the Heisenberg uncertainty principle, 
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∆x∆p ≥ h, where x is position, p is momentum, and h is Plank’s constant, the smallest 

volume of phase space (i.e., (∆x∆k)3) is 8π3.  Within this volume only one discrete value 

of wave vector exists, and therefore only one energy level; however, accounting for spin 

degeneracy, the volume of a single electron energy level is 4π3.  (Schubert, p81, 1993)  

Qualitatively, the greatest density of energy states per unit energy will be inversely 

proportional to the slope of the E(k) dispersion relation.  Because the constant energy 

surfaces for k ≈ 0 are spherical, one can use the dispersion relation of equation (3).  An 

expression for the density of energy states in the conduction or valence band is given by 
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where the integral is performed over a constant energy surface in k-space, and Ec,v are the 

energies of the conduction band minima and valence band maxima, respectively. 

 The number of electrons occupying energy states in the conduction band is then 

given by 
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where f(E) is the Fermi-Dirac distribution function given by 
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Here EF is the Fermi energy, kB is Boltzmann’s constant, and T is absolute temperature.  

When EF is generally 3kBT or more lower than Ec (i.e., non-degenerate), the Fermi-Dirac 

distribution may be adequately approximated by the much simpler Maxwell-Boltzmann 
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distribution: exp[ ( ) / ]MB F Bf E E k T= − − .  Using the Maxwell-Boltzmann approximation 

to solve the integral of equation (6), one obtains 
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The pre-exponential factor in equation (8) is known as the effective density of states in 

the conduction band and represents an upper limit on the volume concentration of 

conduction electrons in a non-degenerate semiconductor. (McKelvey, 1966:265; 

Schubert, 1993:81; Ashcroft and Mermin, 1976:574).  A similar derivation provides the 

concentration of holes in the valence band, 
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which can then be used to calculate the intrinsic carrier concentration given by 
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where Eg is the bandgap energy.  At any given temperature, ni is a unique material 

parameter depending only on the carrier effective masses and the bandgap.  In a pure 

semiconductor crystal free of defects and impurities, at every temperature ni = n = p. 

 
Impurities 

 Due to the different curvatures of conduction band and valence band, generally 

mc* ∫ mv*, but more importantly, a semiconductor is rarely free of impurities.  Impurities 

are the essence of semiconductor material and device physics.  As mentioned previously, 

the prevalence of semiconductor materials in our world today results from our ability to 
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accurately and reliably control their electrical properties.  The three primary electrical 

properties of a semiconductor that can be controlled, and therefore exploited, are its 

conductivity, carrier concentration, and mobility.  These three properties are not 

independent, but rather interrelated as shown in the expression for conductivity 

 ( )ne n p pσ µ µ= + , (11) 

where e is the elementary charge, n and p are, as before, the equilibrium concentrations of 

electrons in the conduction band and holes in the valence band, respectively, and mn and 

mp are the mobilities of those electrons and holes, respectively.  Although, as will be 

reviewed shortly, n and p can be controlled, there is a fundamental law of statistical 

physics that governs their relationship: the law of mass action, ni
2 = np.  Because the 

intrinsic carrier concentration, ni, is a constant material property at any given 

temperature, a change in the equilibrium concentration of one carrier type forces a change 

in the other.  The conductivity of any semiconductor is thus greatest when the material 

has a large concentration of conduction electrons (n-type) or valence holes (p-type).  A 

semiconductor can be made either n-type or p-type by the careful and intentional 

introduction of impurities called dopants. 

 Because of the well-structured nature of the covalent bonding in (e.g., III-V) 

semiconductors, a complete ns2np6 shell configuration is achieved.  When an impurity 

from a different group substitutes on either the cation (III) or anion (V) sublattice, the 

result will be an extra valence electron (donor) or a vacant electron level (acceptor) with 

respect to a complete ns2np6 shell configuration.  Qualitatively, the donor or acceptor 

impurities can be ionized to “donate” an electron to the conduction band or “accept” an 

electron from the valence band (thus leaving behind a hole), respectively.  Quantitatively, 
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the resulting equilibrium concentrations of electrons and holes in a semiconductor depend 

on the ionization energy of the impurity species.  The ionization energies of most 

impurities can be approximated using a hydrogen atom model in which an electron (-e) is 

coulombically bound to a proton (+e).  The well-known solution to this simple system is 

 
4

2 2 13.06 eV
2

om eE
κ

= − = − , (12) 

where k = 4pe, and e is the permittivity of a vacuum.  When applying this hydrogenic 

model to semiconductors, two important modifications must be made.  Firstly, because of 

the influence of the periodic lattice potential, the electron (hole) has an effective mass, 

mc* (mv*).  Secondly, the relative dielectric constant, er, of semiconductors is several 

times larger than that of a vacuum.  For these reasons, the ionization energy of effective 

mass dopants or hydrogenic dopants in semiconductors empirically follows the 

hydrogenic ionization energy modified by the factors mc,v*/mo and er
-2.  Considering 

GaAs, which has mc* = 0.063mo, mv* = 0.53mo, and er = 13.2, one estimates the nominal 

ionization energy to be 5 meV for effective mass donors and 41 meV for effective mass 

acceptors.  Using the data from Table 1, the analogous values for donors and acceptors in 

GaN are 36 and 132 meV, respectively.  The empirical ionization energies for several 

donor and acceptor species in GaAs are shown in Figure 6.  Virtually all impurities and 

defects introduce energy levels within the bandgap of semiconductors.  Shallow donor 

levels are just beneath the conduction band minima, while shallow acceptor levels are just 

above the valence band maxima.  Deep levels resulting from localized impurities are 

often 140 meV or greater from the nearest band-edge.  When a donor (acceptor) is  
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Figure 6. Empirical ionization energies in eV for several donor and acceptor species and 
deep levels in GaAs (Sze, 1985:23). 

ionized, a free electron (hole) is introduced into the conduction (valence) band of the 

semiconductor, thus increasing the conductivity proportional to the dopant concentration. 

 In the absence of other external excitation, shallow donors and acceptors are 

generally thermally ionized.  Statistical physics allows us to calculate the concentration 

of free carriers in either the conduction or valence bands by solving the charge balance 

equation given by 

 , (13) ( ) (a a d dn N p p N n+ − = + − )

where Na and Nd are the total concentrations of acceptor and donor impurities, 

respectively; pa and nd are the concentration of unionized acceptor and donor impurities, 

respectively.  Under thermal equilibrium, the expressions for pa and nd are given by 

 
11 exp

a
a

F a

v B

Np
E E

g k T

=
 −

+  
 

 (14) 

 26



and 
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where gv,c are the degeneracies of the energy levels in the valence and conduction bands, 

respectively, and Ea,d are the ionization energies of acceptors and donors, respectively 

(McKelvey, 1966:271).  Depending on the relative doping concentrations (Na versus Nd), 

and the temperature regime considered, certain terms in equation (13) can be assumed 

negligible, thus simplifying the calculation.  Often one must fit the measured carrier 

concentrations as a function of temperature, n(T) or p(T), to equation (13) to extract 

values for Na and Nd, and the appropriate ionization energy. 

 The thermal ionization energy extracted from a fit to measured data (e.g. an 

Arrhenius plot) can be lower than the actual ionization energy of an isolated impurity on 

a substitutional lattice site due to impurity screening.  When the concentration of 

impurities becomes so large that the average separation is on the order of the effective 

Bohr radius, the semiconductor can undergo a Mott transition to a metal.  This critical 

doping density is given by 
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where kr = 4per, and er is the relative dielectric constant of the semiconductor.  The actual 

donor ionization energy, Ed0, will be reduced to the effective donor ionization energy, Ed, 

due to the effects of impurity screening per (Schubert, 1993:36) 
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In addition to effective ionization energy reduction, other high doping effects are 

the formation of an impurity band, band tailing, and band filling.  Under the condition N 

<< Ncrit, impurities can be considered isolated and non-interacting with discrete energy 

levels within the bandgap.  However, as the doping concentration increases and N § Ncrit, 

the overlap of donor electron wavefunctions increases, and an impurity band forms.  

When N ¥ Ncrit, this impurity band merges with the conduction band.  Because impurities 

have a random spatial distribution, there are random fluctuations in the band edges that 

result in band tailing.  Free carriers no longer occupy states only at the bottom of the 

conduction band, and band filling is observed for heavily doped, highly degenerate 

semiconductors.
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III. Ion Implantation, Defects, and Annealing Theory 

 
Introduction 

There are three primary methods of introducing impurities into a semiconductor 

crystal for the purpose of controlling its electrical and optical properties: via epitaxial 

growth, via diffusion, and via ion implantation.  Ion implantation is a well-established 

technique with widespread use in fabricating integrated circuits from the more mature 

material systems such as Si, GaAs, and InP.  The method involves ionizing the dopant 

source, accelerating these ions at a given energy, forming a beam with a given fluence, 

then rastering this beam across the target surface to produce a desired dose.  Standard 

acceleration energies range from 10 to 500 keV.   Common doses of impurity atoms 

implanted in semiconductors range from 1011 to 1016 cm-2.  Doping during growth is 

typically the most expensive option and provides limited flexibility.  Due to the 

chemically robust nature of wide bandgap materials, the diffusivities of nearly all dopant 

impurities into these materials are very low.  Thus, doping wide bandgap materials via 

diffusion is impractical due to the temperature and duration that would be required. 

Alternatively, ion implantation offers many technological advantages that are 

important in the fabrication of electronic and optical devices: 

1. Excellent reproducibility, uniformity, and speed of the doping process. 

2. Precise control of the amount of dopant introduced (§ 1% over the typical dose 

range, which is especially important for low concentrations) even with impurity 

concentrations above their equilibrium solid solubility limits. 
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3. Less stringent requirements on dopant source purity because mass separation is 

used. 

4. Avoidance of high temperatures during the implantation process itself (room-

temperature implantation is typical though implantation has been performed from 

77 K-800 oC). 

5. Ability to provide selective area doping by using simple masking methods (e.g., 

oxides, nitrides, photoresists), as well as the ability to implant through similar thin 

passivating layers (e.g., AlN thermal encapsulants). 

6. Ability to dope shallow layers with very high impurity concentrations with 

relatively small lateral straggle of the implanted ions (e.g., small geometry 

devices, IMPATT diodes, microwave transistors). 

7. Ability to create unique doping profiles by performing multiple implantations 

modifying the accelerating voltage, dose, or ion species. 

Ion implantation also has certain disadvantages which must be considered: 

1. Radiation damage is produced during implantation causing undesirable electrical 

and optical properties.  Thus, high temperature annealing is required to restore the 

crystal lattice and move the implanted ions onto electrically active lattice 

positions; in some cases, a significant amount of damage remains even after 

annealing. 

2. Implanted layers are generally limited to the surface (§ 1 mm).  Greater 

penetration depths can be achieved with greater accelerating voltages, but at the 

expense of greater radiation damage which can be prohibitive. 
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3. Secondary effects either during implantation or the subsequent annealing (e.g., 

channeling, diffusion) tend to reduce peak concentrations and deepen the 

implanted profile beyond the theoretical predictions  (Pearton, 1988; Ryssel and 

Ruge, 1986:1,2). 

 
Ion Implantation Theory 

Predicting the depth profile of the implanted ions is critical for device 

applications.  The depth at which a typical ion will come to rest within the host 

semiconductor lattice is dependent upon the energy of the ion, the mass of the ion, the 

mass of the host atoms, and the density of the host.  The two primary stopping methods 

for ions within a solid are electronic and nuclear stopping.  Electronic stopping occurs 

when the incident ion collides inelastically with bound electrons of the host producing 

heat and host atom excitation or ionization.  Nuclear stopping occurs when the incident 

ion undergoes an elastic collision with a host nucleus.  Depending on the ion’s energy, 

this can cause the host atom to be displaced from its equilibrium lattice position, which 

itself can cause a cascade of further displacements.  

The energy of the incident ion determines which stopping effect will be dominant.  

At lower energies, nuclear stopping will dominate while at higher energies electronic 

stopping dominates, because at higher energies the ion is moving too fast to sufficiently 

transfer energy to any host atom nuclei.  Electronic stopping power remains proportional 

to E  (i.e., the velocity of the ions) within the range of typical implantation energies 

used to dope semiconductors, whereas nuclear stopping power peaks at low energy and 

then drops below the electronic stopping power as energy increases.  Summing both 

 31



stopping effects, the projected range of most ions is roughly proportional to the ion’s 

incident energy. 

The projected range of implanted ions was first theoretically investigated by 

Lindhard, Scharff and Schiøtt (1963) and their results are generally referred to as the LSS 

theory.  They showed that the statistical range of implanted ions will follow a Gaussian 

distribution about an average range called the projected range, Rp, with a standard 

deviation called the projected straggle, DRp.  If the ion beam is scanned uniformly across 

the wafer surface the distribution of implanted ions varies only in the projected direction; 

there is no lateral straggle.  The volume concentration of implanted ions is then given by 
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where f is the implantation dose (cm-2).  Clearly, the peak concentration will occur at a 

depth of Rp beneath the sample’s surface given by 
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The projected range and projected straggle (or the peak concentration from which 

the projected straggle may be calculated for the given dose) are the two parameters which 

uniquely define the Gaussian depth profile given the ion’s mass, the ion’s energy, and the 

atomic mass and molecular density of the host.  The profiles are best estimated using a 

program which considers these values and then performs the necessary calculations to 

determine the projected range and projected straggle.  Figure 7 shows the Gaussian 

profiles of Si-implanted GaN for a variety of energies as well as the profile of an Ar-

implant in GaN to demonstrate the effects of differing acceleration voltages and ion  
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Figure 7. Gaussian implantation depth profiles showing the effects of ion energy and 
mass for various Si and Ar implants each at a dose of 1x1014 cm-2. 

masses on the position of the profile.  These profiles were calculated using a commercial 

software package developed by Implant Sciences Corporation called Profile Code, 

version 2.1. 

The Gaussian distribution is a very good first-order approximation to the actual depth 

profile of implanted ions in semiconductors despite the fact that the LSS theory assumes 

an amorphous solid.  Although semiconductors are crystalline and highly symmetrical, 

they can be made to appear essentially amorphous by tilting the host lattice (typically 7o) 

so that the incident ion beam is slightly off a host axis of symmetry.  This procedure will 

 33



minimize any ion channeling, which occurs when an ion moves through the host along a 

crystal axis in between planes of symmetry, practically unimpeded by any nuclear 

collisions.  Considering moments of higher order in the range calculation will result in 

more complicated distributions which are theoretically more accurate.  However, due to 

other difficult to model non-idealities (e.g., channeling, diffusion) associated with all ion 

implantations, the more complicated distributions offer little improvement over the basic 

Gaussian profile which remains a sufficient prediction for nearly all ion implantations 

into semiconductors. 

 
Radiation Damage:  Crystal Defects 

 An inevitable consequence of ion implantation in semiconductors is radiation 

damage.  This damage, which manifests as various defects to the semiconductor’s crystal 

structure, can have serious detrimental effects on the electrical and optical properties of 

the semiconductor.  As discussed previously, nuclear collisions between an ion and a host 

atom can displace the host atom that can then cause a cascade of further displacements.  

After an ion has come to rest at random within the host lattice, it has left behind a 

network of simple, complex, and extended defects. 

 Simple or point defects are those involving only a single host atom, and involve 

vacancies, interstitials, and antisites.  Considering GaN, for example, one could have 

either a gallium or nitrogen vacancy (VGa or VN), a gallium or nitrogen interstitial (Gai or 

Ni), as well as a gallium or nitrogen antisite (GaN or NGa) in which a host atom has been 

displaced and has come to rest on the opposite sublattice.  A Frenkel pair is a vacancy 

with the displaced atom as a neighboring interstitial.  Because each of these point defects 
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represents a host atom removed from its equilibrium position within the crystal lattice, 

there will be unpaired valence electrons that when ionized will make these defects either 

singly or multiply charged.  A nitrogen vacancy leaves behind a center consisting of four 

Ga atoms and three unpaired electrons, two of which will pair making VN a single donor.  

Similarly, a gallium vacancy removes three electrons from a center consisting of four N 

atoms making VGa a triple acceptor.  A Gai has three valence electrons that can be ionized 

making it a triple donor whereas Ni is a triple acceptor.  Because GaN is two electrons 

short of that needed to properly bond with it’s four Ga neighbors, it can be a double 

acceptor.  Similarly, NGa can be a double donor. 

 When two or more point defects combine, a complex is formed.  Additionally, 

divacancies and trivacancies can be formed directly from a collision.  The introduction of 

an impurity atom into the host lattice allows for an even greater variety of complexes.  

Group IV ions are unique because they are amphoteric and, when implanted into a III-V 

semiconductor, can occupy either the cation or anion sublattice.  Silicon, when implanted 

into GaN for example, can be either a single donor (SiGa) or a single acceptor (SiN).  As-

implanted however, many of the implanted ions are interstitial.  Nonetheless, an ionized 

single donor can be coulombically attracted to a singly ionized triple acceptor to form a 

double acceptor complex (e.g., VGa
--SiGa

+).  A myriad of other potential complexes are 

possible.  Some are much more probable than others based on the energy gained when the 

complex is formed.  Simple and complex defects can cluster to form dislocation loops or 

lines, which are classified as extended defects.  It is important to note that due to the 

lattice mismatch between GaN epilayers and the substrates upon which they are grown 

(e.g., 12% for sapphire), there will be simple, complex, and extended defects in the as-
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grown GaN even before implantation.  Although implantation will increase the 

concentration of these defects by orders of magnitude, it is important to both electrically 

and optically characterize the as-grown epilayers to establish a baseline and more clearly 

identify the effects of the implantation itself. 

Several factors influence the chemical nature and concentrations of the implant-

induced defects: mass of the ion, implanted ion energy, implanted ion dose, temperature 

of substrate during implantation, and the electronic structure of the ion relative to (in the 

case of III-V compounds) the electronic structure of the host cations and anions (e.g. 

band structure, atomic orbitals, electronegativities, as well as ionic and covalent radii).  

Understandably, radiation damage tends to increase as the implantation dose, the ion’s 

energy, or the ion’s mass is increased.  Light ions (relative to the host atoms) generally 

leave tracks with small amounts of damage.  Initially, they are slowed by electronic 

stopping with little displacement damage.  Then, as their energy decreases, nuclear 

stopping becomes dominant at the end of their range where displacements are more 

likely.  The tracks of heavy ions are more characterized by displacements throughout 

their range.  These effects are shown in Figure 8.  Because a certain amount of energy is 

required to displace a host atom, an implanted ion will typically travel somewhat beyond 

its last displacement before coming to rest.  The result is a damage concentration profile 

that peaks slightly closer to the surface of the host lattice than the ion concentration does.  

The number of displaced host atoms per ion (including cascades) depends on the ion’s 

mass and energy as well as the atomic mass of the host, but can be several hundred to 

several thousand within the range of typical implantations into semiconductors.  When  
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Figure 8. Damage tracks of implanted ions: light ion (M1) and heavy ion (M2) relative to 
host semiconductor atoms. 
 

the damage becomes so great that the concentration of displacements approaches the host 

atomic density, amorphization begins. 

 Generally, the more ionic the semiconductor the more difficult it is to amorphize.  

GaN is a fairly ionic semiconductor and is reported to resist amorphization resulting from 

90 keV Si ion implantation at 77 K for doses less than 1x1016 cm-2, at which point 

amorphization begins at the surface and extends into the bulk as the dose is increased.  

Residual implantation damage resulting from doses less than 1x1016 cm-2 consists of a 

dense network of clusters and loops. (Tan et. al., 1996)  In the case of GaN, 

amorphization is suppressed by a natural dynamic annealing in which damage is repaired 

during the implantation process.  In other semiconductors, dynamic annealing is often 

accomplished by performing implants into heated substrates.  The additional lattice 

vibrations caused by the heat assist the implanted and host ions in reaching equilibrium 

lattice positions.  Even when amorphization is fully suppressed, there is still a rather 

extensive array of simple, complex, and extended defects that must be removed in order 

to fully exploit the desired electrical and optical properties that originally motivated the 
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implantation.  Therefore, whenever semiconductors are implanted with donor or acceptor 

ions, a post-implantation anneal must be performed. 

 
Annealing 

 There are two reasons for annealing semiconductors after implantation doping: to 

repair the radiation damage to the crystal lattice, and to activate the implanted species 

onto the appropriate sublattice position.  Many defects within the implanted region form 

localized deep levels that act as traps for free carriers and compensate shallow donors or 

acceptors.  These deep levels can also reduce the efficiency of optical devices by offering 

preferential non-radiative recombination routes.  The crystalline disorder provides a high 

concentration of scattering centers that greatly decreases the mobility, a measure of how 

efficiently free carriers move through the semiconductor under the influence of an 

applied voltage. When an implanted sample is annealed, several thermodynamic 

processes occur.  Not only are implanted atoms electrically activated by substitution on 

the appropriate host sublattice and radiation damage being repaired, but also anneal-

induced defects may simultaneously be formed.  Because annealing is a thermodynamic 

process, temperature and time can theoretically be traded off to produce similar results. 

 Despite the technological maturity of the implantation-annealing process in 

doping elemental semiconductors (e.g., Si) as well as various III-V semiconductors (e.g., 

GaAs), there are several important differences between the two: 

1. Avoiding amorphization in III-V semiconductors is more critical than in 

elemental semiconductors due to the greater difficulty in restoring order to 

both the cation and anion sublattices. 

 38



2. A more thorough understanding of the dopant activation process is required in 

III-V semiconductors to ensure the implanted ion substitutes on the desired 

sublattice, whereas stoichiometry is always maintained in elemental 

semiconductors. 

3. The different masses of the cation and anion in III-V materials will cause 

unequal recoil during implantation collisions as the lighter host mass will 

recoil further upsetting local stoichiometry. 

4. Due to the higher vapor pressures of all group V anions, steps must be taken 

to prevent dissociation of the III-V compound and subsequent loss of the 

group V atoms during high-temperature annealing. 

Typically, the lower the dose, energy, or mass of the ion, the less damage created 

and thus, the lower the anneal temperature required to repair the damage and activate the 

implanted dopants.  However, even the lowest concentrations of radiation damage in III-

V materials still require a high enough anneal temperature that dissociation is a 

significant concern.  There are three common procedures practiced in post-implantation 

annealing of III-V materials to prevent or minimize the evaporation of the group V 

atoms: 1) an epitaxially-grown or deposited encapsulant (e.g., SiO2, Si3N4, AlN), 2) 

group V overpressure in the annealing chamber, and 3) a proximity cap placed face-to-

face with the sample to be annealed.  An encapsulant is often the most effective method, 

but there are certain requirements the encapsulant must satisfy: 

1. Prevent dissociation of the III-V material during the anneal, which necessarily 

means that the encapsulant must possess sufficient thermal integrity itself to 

survive the anneal. 
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2. Prevent out diffusion of the implanted species. 

3. Not react chemically with the implanted layer. 

4. Be easily removed after annealing. 

5. Possess excellent uniformity across the implanted wafer if the implantation is 

performed through the encapsulant. 

6. Have thermal expansion coefficient reasonably close to the implanted layer to 

minimize any stress or strain that may be induced.  Thinner encapsulants 

better withstand mismatches and are less likely to peel or crack. 

7. Allow for low-temperature deposition if applied after implantation to 

minimize any potential dopant diffusion (Pearton, 1988:262). 

Often the type of anneal performed will influence the selection of the thermal 

encapsulant or other method to prevent dissociation.  There are three general types of 

implant anneals: rapid thermal anneal (RTA), conventional furnace anneal (CFA), and 

beam anneal (e.g., pulsed laser anneal (PLA), electron-beam anneal).  RTAs are typically 

characterized by fast temperature ramp rates (> 50 oC/sec) and short dwell times at the 

anneal temperature (§ 1 min).  CFAs are usually much longer (10-30 min) though 

anneals as long as 90 min are not uncommon.  Because beam anneals are designed to 

very rapidly melt then resolidify the implanted layer, they have not received widespread 

use in annealing implanted III-V materials due to the unique difficulties involved in 

preventing group V evaporation under such conditions. 

When systematic ion implantation and annealing studies are performed, generally 

the answers to the following questions are sought: 
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1. At each dose, how do the carrier concentration and mobility vary with anneal 

temperature? 

2. At a given anneal temperature, how do the implant activation efficiency and 

mobility vary with dose? 

3. What are the ionization energies of the activated implants? 

4. How does the implantation temperature affect the carrier concentration and 

mobility? 

Usually, the driving goal for device applications is to determine an optimum anneal 

temperature at which the maximum activation is obtained, or to determine the maximum 

activation at a certain temperature with a certain anneal time.  These two goals are met by 

isochronal and isothermal annealing studies, respectively.  The anneal time is kept 

constant as the anneal temperature is varied in isochronal annealing, which can be 

performed as either an RTA or CFA.  The anneal time is varied as the anneal temperature 

is held constant in isothermal annealing, which is best performed in CFAs. 

Although CFAs have received the most use in annealing implanted 

semiconductors, RTAs, frequently employing a heat source comprised of banks of high 

power quartz halogen lights, have grown in popularity for two reasons.  Firstly, the 

shorter time of an RTA is more desirable for production line usage.  Secondly, many 

common dopants diffuse rather quickly in some III-V semiconductors, thus broadening 

the as-implanted profile; this concern can be minimized by the short duration of an RTA.  

However, there are reasons to consider a CFA of implanted samples.  The CFA furnaces 

can reach higher anneal temperatures than many commercially available RTA ovens, and 

they can also physically maintain those temperatures longer without reliability concerns.  
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Depending on the particular dopant and semiconductor host to be annealed, dopant 

diffusion is not always a major concern.  Additionally, the various implantation defects 

recover at different temperatures.  Such recovery may occur before or after substitutional 

dopant activation.  In some materials (e.g., GaAs), some radiation damage is eliminated 

after annealing at 500 oC; however, temperatures of more than 700 oC are required for 

electrical activation of the implanted ions. (Ryssel and Ruge, 1986:52).  In other 

materials (e.g., GaN), implanted Si ions occupy substitutional lattice positions between 

1050 and 1100 oC but remain compensated (electrically inactive) until point defects are 

repaired at higher temperatures. (Zolper, 1997:379).  Thus, substitution is a necessary but 

insufficient condition for acceptable electrical activation. 

 Some wide bandgap semiconductors that have high melting points (e.g., GaN, 

SiC) require annealing temperatures exceeding 1300 oC to fully remove defects.  Pearton 

(1999) reported that temperatures above 1300 oC are required to completely remove 

implantation damage in GaN and that peak activation for implanted Si is achieved at 

1400 oC for AlN-encapsulated samples.  These results provide evidence for an empirical 

rule of thumb which states that anneal temperatures approaching 2/3 of a semiconductor’s 

melting point (Tm = 2518 oC for GaN) are needed for removal of defects caused by 

implantation. 

 
Coimplantation 

 The concept of dual implantation was first proposed by Heckingbottom and 

Ambridge (1973), who theorized that the activation of an implanted dopant into a III-V 

semiconductor would be increased if stoichiometry was maintained via an equal dose 
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coimplantation of the opposite sublattice host atom.  Under thermodynamic equilibrium, 

the product of group III and group V vacancy concentrations is a constant.  Thus, when a 

dopant occupies a particular sublattice vacancy, the vacancy concentration of the opposite 

sublattice increases which tends to limit dopant activation by the formation of 

compensating dopant-vacancy complexes.  The coimplant maintains stoichiometry and 

increases dopant activation by preferentially occupying the opposite sublattice.  Further, 

if the dopant species is amphoteric, the coimplant increases the probability that the 

dopant will substitute on the desired sublattice thereby avoiding self-compensation.  

Many experiments involving a variety of implants and semiconductor materials have 

validated this theory. 

 There are two other rationales in addition to stoichiometry maintenance that 

support the practice of coimplantation to enhance dopant activation or to otherwise 

improve electrical properties of the implanted material.  The first is to coimplant a 

heavier ion to create additional vacancies into which the dopant implant may more easily 

substitute.  This technique has been used in GaAs to improve carbon activation.  Being a 

relatively light ion, carbon is unable to produce sufficient lattice damage, i.e., arsenic 

vacancies, to assist in activation.  Coimplantation of Ga, Zn, or Cd significantly improves 

the electrical activation of the implanted C (Morton et. al., 1998).  The second is a 

technique in which both acceptors and donors are implanted to improve p-type 

conductivity and the concentration of holes.  This method was first reported for in-situ 

doping at about the same time by Brandt et. al. (1996) and Yamamoto and Katayama-

Yoshida (1997).  Brandt et. al. refer to the technique as “reactive codoping” because the 

 43



donors are believed to react with the acceptors forming donor-acceptor complexes having 

the following results: 

1. The solubility of both species is enhanced, preventing self-compensation. (Due to 

the non-equilibrium nature of ion implantation, solubility limits are not a concern 

as they are during growth when acceptor nitride precipitates are likely to form at 

high doping concentrations.) 

2. Donor-acceptor ion pairs are predicted to form, reducing the energy levels of both 

species (i.e., closer to their respective band edge), thus reducing activation energy.  

For example, in GaN, BeGa
--ON

+ nearest neighbor pairs could be formed.  

(Because the ion pair complex is energetically favored, there is a reduction in the 

Be acceptor energy level which serves to increase the concentration of ionized Be 

acceptors, and thus the hole concentration.  Obviously, doping with both donors 

and acceptors results in compensation, which is overcome by doping Be at a 

slightly higher concentration than O.) 

3. The formation of donor-acceptor ion pairs transforms two long-range coulombic 

scattering centers resulting from each isolated species into a single short-range 

dipole scattering center, thus enhancing the mobility and indirectly the 

conductivity of the implanted layer (Ploog and Brandt, 1998).
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IV. Characterization Techniques 

 
Introduction 

 There are a wide variety of characterization techniques that can be used to 

discover the numerous semiconductor material properties.  Virtually all techniques 

involve probing the material and then measuring the material’s response to the probe, or 

the material’s effect on the probe.  These responses or effects are usually recorded as a 

function of time, temperature, dimension, or some probe attribute such as energy, 

wavelength, or intensity.  The type of probe used determines the material property 

examined.  Nearly all material properties fall into one of the following categories: 

electrical, optical, magnetic, physical, structural, or chemical.  Most research 

characterizing semiconductor materials has focused on their electrical, optical or 

structural properties.  All three of these properties are closely related to each other 

because energy states within the bandgap are influenced by defects in the crystalline 

structure.  Because of the vast application of semiconductors in electrical and optical 

devices, naturally, the electrical and optical properties are the most important.  Among 

those properties that can be engineered, carrier concentration, carrier mobility, and 

radiative centers within the bandgap are the most meaningful in determining device 

performance. 

 
Hall Effect Measurements 

 The Hall effect (Hall, 1879) is used to determine the conductivity type and carrier 

concentration of semiconductors by forcing a current (induced by an electric field, E) 
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through a sample within a magnetic field, B.  Under such conditions, the free charge 

carriers will experience a Lorentz force, FL given by: 

 (L e )= ×F v B , (20) 

where v is the velocity of the carriers moving under the influence of the E field.  In Hall 

effect measurements, the sample surface through which the current is forced is positioned 

orthogonal to the B field.  The resulting Lorentz force on the carriers is then directed 

orthogonally to both the applied B and E fields.  Because electrons and holes have 

opposite charge (-e and +e) and flow in opposite directions (-vx and +vx), the magnetic 

field, Bz, causes both particles to move in the y-direction.  If either carrier type is 

dominant, the accumulation of internal charge induces a steady state Hall voltage, VH, in 

the y-direction whose sign determines the carrier type, and whose magnitude is inversely 

proportional to the net sheet carrier concentration, ns.  The net accumulation of electrons 

on one side of an n-type semiconductor resulting from a fixed current in a magnetic field 

is shown in Figure 9.  When the electrostatic force caused by the induced Hall field, e·EH, 

balances the oppositely directed Lorentz force, internal charge accumulation stops and an 

equilibrium Hall voltage is measured as described by the following expression: 

 x z H
H Hs x z H

s

I B rV R I
en

= = B r , (21) 

where Ix is the magnitude of the forced current, rH is the Hall factor which accounts for 

the effect of different scattering mechanisms on the carrier velocity distribution, and RHs 

is the sheet Hall coefficient.  The carrier concentration, n, and the Hall coefficient, RH are 

given by the expressions /  , and  s Hn n t R t R= Hs= ⋅ , where t is the thickness of the 

semiconductor layer.  For simplicity rH is generally assumed to be unity, although  
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Figure 9. van der Pauw technique for Hall effect measurements showing forced current, I, 
applied magnetic field, B, induced Hall voltage, VH, and electron accumulation for an n-
type semiconductor sample. 

because 1 § rH < 2, Hall measurements tend to underestimate the actual sheet carrier 

concentration. 

 The contact geometry shown in Figure 9 represents the van der Pauw technique 

(van der Pauw, 1958), which is used to measure the Hall effect and determine the sample 

sheet resistivity while minimizing the effect of the contact resistivities.  Although van der 

Pauw’s theory states that all contacts must lay on the sample periphery and ideally be 

point contacts, it is most important that all contacts be highly ohmic to obtain 

meaningfully reliable measurements.  A total of eight different current-voltage pair 
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measurements are averaged to calculate the sheet resistivity, rs, then, four different 

current-voltage pair measurements each under forward and reverse B fields are averaged 

to calculate the Hall coefficient.  The Hall mobility can be determined from 

 Hs
H

s

Rµ
ρ

= . (22) 

Unless, steps are taken to account for multiple conducting layers or non-uniform carrier 

distributions, Hall effect measurements provide only the average carrier concentration 

and mobility values over the entire conducting layer thickness, i.e., the depth beneath the 

surface until a pn-junction or insulating layer is reached. 

  Temperature dependent Hall (TDH) measurements provide carrier concentration 

and mobility values as a functions of temperature.  Because the carrier concentration is 

proportional to , the ionization energy, E, can be determined from the slope 

of an Arrhenius plot of TDH measurements.  At sufficiently low temperatures, one would 

expect even the shallowest impurities to freeze out leaving the material highly resistive.  

However, if the material is highly degenerate, TDH measurements will reveal this 

degenerate layer at the lowest temperatures exhibiting a temperature-independent 

mobility and carrier concentration due to the effective ionization energy reducing to 0 

meV.  The samples are kept under a vacuum during TDH measurements to prevent 

condensation or oxidation which can adversely affect the sample and measurement 

accuracy.  Figure 10 shows an automated TDH measurement system capable of 

measuring highly resistive semiconductor samples. 

exp( / )BE k T−
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Figure 10. Schematic diagram of an automated Hall effect system used for high resistivity 
and temperature-dependent Hall effect measurements. 
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Photoluminescence 

 All luminescence spectroscopies probe the intrinsic and extrinsic radiative 

transitions of semiconductors when an electron from the valence band is excited into the 

conduction band leaving behind a hole.  These spectroscopic methods are distinguished 

by their excitation source, which must be of greater energy than the semiconductor’s 

bandgap.  Photoluminescence (PL) uses a laser whose energy is typically 0.1-1eV greater 

than the typical bandgap, whereas cathodoluminescence (CL) uses an electron beam 

whose energy can be several thousand eV greater than the bandgap.  For this reason, CL 

can be used when the material’s bandgap is too wide to be excited by a laser, as for 

AlxGa1-xN alloys with x ¥ 0.3.  Another advantage of CL is that the electron beam can 

penetrate, and therefore excite, the material more deeply than a laser.  Thus CL spectra 

can be collected not only as a function of excitation intensity by varying the electron 

beam current, but also as a function of excitation depth by varying the electron beam 

energy.  A disadvantage of CL compared to PL is that the material must be sufficiently 

conductive to prevent surface charge accumulation from severely degrading the spectra.  

A conductive path has to be established in the preparation of highly resistive samples.  

Figure 11 illustrates the components and connectivity of a PL system used to collect 

temperature- and power-dependent luminescence spectra. 

Regardless of the particular excitation source, the non-equilibrium electron-hole 

pair will relax to its equilibrium lowest energy state by interacting with phonons and 

various impurity or defect energy levels within the bandgap until its eventual 

recombination occurs.  A luminescence spectrum is collected for all pair recombinations 

that involve a radiative transition between two energy levels.  Figure 12 shows a flatband  
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Figure 12. Radiative transitions observed in semiconductor luminescence spectra. 

diagram annotated with several radiative transitions frequently observed in luminescence 

spectra. 

 Transition (a) is a band-to-band transition (eh) typically dominant in room 

temperature spectra, having a photon energy of ( ) / 2g BE k Tω = + .  Transition (b) is a 

free exciton (FE): an electron (e-) coulombically bound to a hole (o+) acting as a single 

particle, analogous to a hydrogen atom.  The photon energy of this transition is the 

bandgap energy, Eg, less the binding energy of the exciton as given by: 

 
4

2 2

*
2

r
g

m eEω
κ

= − , (23) 
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where mr* is the reduced effective mass of the exciton.  Luminescence spectra are 

typically collected on samples held at 10 K or less to ensure that nearly all impurity levels 

are in their lowest state, thus the spectra will show sharp transitions between the actual 

impurity levels rather than transitions broadened by a ½ kBT  kinetic energy distribution.  

Perturbations in the periodic potential of the lattice enable excitons to become bound to 

impurities by coulombic interaction.  The raditive energy from bound excitons such as a 

neutral-donor-bound exciton (Do,X) is further reduced by the binding center.  Transition 

(c) depicts an electron on a neutral donor recombining with a free hole (Do,h), while 

transition (d) shows a free electron recombining with a hole on a neutral acceptor (e,Ao) 

with photon energies given by 

 ,
1
2g d a BE E k Tω = − + , (24) 

respectively.  Transition (e) is a transition from an electron on a shallow neutral donor 

recombining with a hole on a shallow neutral acceptor (DAP), whereas (f) is a deep donor 

to deep acceptor pair transition (DdAdP).   Shallow levels are usually substitutional 

effective mass dopants (e.g., SiGa, MgGa) with extended wave functions.  Deep levels can 

act as either donors or acceptors, have multiple charged states, and are often complexes 

comprised of shallow impurities bonded to various defects (e.g. VGa-SiGa, VN-MgGa).  

Deep levels can participate in generic DAP transitions with shallow levels, in free-to-

bound transitions, and they can bind excitons like any other defect or impurity.  The 

energy released in a DAP transition is given by 

 
2

g d a
eE E E

r
ω

κ
= − − + , (25) 
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where r is the spatial separation between the donor and the acceptor participating in the 

transition.  The last term is the electrostatic energy gained when the neutral pair (DoAo) 

becomes a dipole (D+A-) after the transition has occurred.  DAP peaks in a luminescence 

spectra can be rather broad due to the wide range of discrete values that r can assume. 

Knowing the bandgap energy, equations (24) and (25) are frequently used to calculate the 

ionization energies of donor and acceptors. 

Theoretically, all of the radiative transitions shown in Figure 12 can involve 

phonons, though photon-phonon interactions are most readily seen in shallow DAP 

transitions.  Phonons from the higher frequency longitudinal optical (LO) branch interact 

most frequently with DAP transitions.  A portion of the transition energy is provided to 

the lattice via one or more phonons referred to as phonon replicas and designated as 1LO, 

2LO, etc.  The probability of interaction decreases as the number of phonons involved 

increases accounting for the reduction in intensity. 

 The relative intensity of each of the transition features in a luminescence spectrum 

supports general observations regarding the electrical and even structural properties of 

the semiconductor material.  Because there are relatively few energy levels within the 

bandgap of high purity semiconductors, FE peaks generally dominate the low 

temperature (T < 10 K) PL spectra, whereas sharp bound exciton peaks typically 

dominate the spectra of high quality lightly doped or unintentionally doped 

semiconductors.  The crystalline quality or impurity concentration has a significant effect 

on the intensity of excitonic transitions.  Comparing the intensities of exciton peaks in 

unimplanted and implanted material is a qualitative measure of how much lattice damage 

remains after high temperature annealing to activate implanted ions and recover 
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crystalline order.  Furthermore, as electrostatic lattice perturbations increase with doping 

concentration, exciton formation decreases.    In addition to excitonic transitions, DAP 

recombinations offer valuable insights to understand the intrabandgap levels. 

The relative intensity of shallow DAP peaks is a rough qualitative measure of the 

level of compensation within the material.  Material that is highly compensated will 

likely have strong DAP activity and could be fairly resistive despite a high concentration 

of either shallow donors or acceptors.  Deep DAP peaks indicate the presence of defects, 

or complexes in the material which may involve shallow impurities.  If the concentration 

of shallow impurities participating in deep donor or acceptor complexes is much greater 

than the concentration of isolated shallow impurities, deep DAP peaks will dominate over 

shallow DAP peaks, and the material will likely be highly resistive.  Occasionally, the 

low-temperature PL spectrum is rather weak and noisy with no dominant features.  In this 

case, one would either suspect the sample to be highly degenerate or of very poor 

crystalline quality, perhaps resulting from many growth defects or unrecovered ion 

implantation damage.  When a high concentration of defects exists, the majority of non-

equilibrium carriers are trapped and recombine nonradiatively.  However, in most cases, 

an even better understanding of the electrical and optical properties of a semiconductor 

can be gleaned by collecting variable-temperature PL spectra. 

Temperature-dependent luminescence spectra often reveal the nature of unknown 

peaks and their associated energy levels.   The spectral position of DAP transitions 

typically red-shift with increasing temperature according to the change in bandgap energy 

with temperature.  More importantly however, shallow DAP peak intensities decrease 

rapidly with temperature.  The rate at which the peak intensity is reduced provides a 
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qualitative measure of the individual donor and acceptor levels within the bandgap.  The 

more shallow a level, the more readily it ionizes with temperature, thus quenching the 

corresponding DAP transitions.  Deep levels are much less vulnerable to thermal 

ionization and thus strongly participate in DAP transitions at higher temperatures.  Due to 

the wide bandgap of GaN, a deep DAP peak may be the result of a transition between a 

shallow level and a very deep level, or between two moderately deep levels.  

Temperature-dependent PL data can resolve this ambiguity by comparing the relative 

intensity variation of a shallow DAP and a deep DAP in the same spectra. 

Power-dependent PL spectra can also often reveal the nature of unknown peaks.  

Considering all the transitions of Figure 12, only DAP transitions blue-shift with 

excitation power or intensity.  At low excitation levels the most probable DAP transitions 

occur between distant pairs because there are many more distant impurities than there are 

nearer neighbors.  As the excitation intensity is increased, more donor and acceptor pairs 

participate, thus reducing the average distance between transitioning pairs.  As seen in 

equation (25), as r decreases, the peak photon energy increases.  Naturally, the intensity 

of all luminescence goes as the excitation intensity; however, the spectral positions of 

exciton and free-to-bound transitions remain unaffected. 

For sufficiently high carrier concentrations, the effects of band tailing and band 

filling may be seen in low-temperature PL spectra.  As discussed in the background on 

semiconductor impurities, when N ¥ Ncrit, the interactions from such high impurity and 

free carrier concentrations alters the density of states near the band edge.  The effect of 

band tailing and band filling on the near band edge PL spectra is a Gaussian-like broad 

peak centered around the bandgap. 
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Correlating the results of Hall effect measurements and luminescence spectra can 

generally provide synergistic insights, increasing an understanding of the electrical and 

optical centers, deep levels, and implantation damage recovery as functions of the 

implantation and annealing conditions.  This understanding will then allow device 

fabrication procedures to be optimized fully exploiting GaN material properties.
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V. Experimental Procedures 

 
This chapter describes the experimental procedures including material growth, ion 

implantation, GaN surface protection, RTA and CFA annealing, contact preparation and 

deposition, and finally Hall effect and PL characterization.  In this study, two sets of GaN 

material were examined.  The principal differences between these two sets were the 

method of thermal encapsulation and the GaN epilayer thickness.  Both sets were 

implanted with a variety of species, doses, and implant temperatures. 

 
Sample Growth, Ion Implantation, and Annealing 

The first set of samples was processed from undoped GaN layers grown on 2” 

sapphire substrates by SVT Associates via molecular beam epitaxy (MBE) using an RF 

atomic nitrogen plasma source.  Substrate temperature, flux ratios, and growth rates were 

determined by a combination of pyrometry and reflectometry.  Reflection high-energy 

electron diffraction (RHEED) was used to monitor the growth quality.   First, a thin AlN 

nucleation layer was grown after thermal cleaning and nitridation of the sapphire.  Next, a 

1 µm thick GaN layer was grown at about 750 °C under slightly Ga-rich flux ratios.   

 These as-grown GaN wafers were cut into quadrants using a diamond wire saw in 

preparation for ion implantation.  The wafer quadrants were implanted with Si, Si+Mg, 

Mg, or Mg+O ions at doses of 1x1013, 1x1014, and 1x1015 cm-2 at both room temperature 

and 500 oC.  All Mg ions were implanted at twice these doses to overcome the n-type 

doping effects of the reactive donor coimplantation in hopes of realizing more efficient p-

type GaN as the reactive codoping theory predicted.  The implantation energy, chosen to 
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provide a peak concentration approximately 2000 Å into the GaN, was 220 keV for Si, 

200 keV for Mg, and 160 keV for O. 

Initial Annealing and AlN Encapsulation After Implantation.   

Portions of the as-implanted wafer quadrants were cut into 5 mm x 5 mm samples 

and annealed in an AG Associates Heatpulse 610 RTA.  In order to minimize GaN 

surface dissociation, the samples were placed face up on the Si thermocouple wafer then 

covered with a slightly larger piece of undoped GaN.  Prior to annealing all samples and 

proximity caps were degreased sequentially in acetone, methanol, and blown dry with N2.  

Annealing was performed in flowing N2 at 1050-1150 oC with a dwell time of 15 sec at 

the anneal temperature.  Initial attempts at characterizing both Si and Mg implanted 

samples under these anneal conditions resulted in high resistivity material, producing 

neither n-type nor p-type conductivity.  Additionally, both the samples and proximity 

caps were showing signs of GaN pitting.  Samples annealed at 1200 oC for 15 s with 

proximity caps in flowing N2 were completely destroyed; surface morphology was 

visibly very poor and metallic Ga droplets could be seen in some regions.  It appeared 

that successful activation of the implanted donors and acceptors called for either longer 

anneal times at 1050-1150 oC, or surviving a 1200 oC anneal for 15 s—both of which 

required more robust surface protection. 

 Other portions of the as-implanted wafer quadrants were cut and 1000 Å of AlN 

thermal encapsulant was grown by metal-organic chemical vapor deposition (MOCVD) 

at 450 oC.  These samples were annealed open-face in flowing N2 in a conventional tube 

furnace at 1100-1200 oC for 20 min.  The quality of the AlN film decreased with 

annealing temperature.  Generally, the AlN film on samples annealed at 1100 oC 
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remained fairly intact with only slight weakening and peeling on the sample periphery.  

The GaN underlying all AlN that had peeled or lifted was not adequately protected during 

the anneal and was unfit for any further processing or characterization.  The region of 

degraded or destroyed AlN on the samples annealed at 1150 oC extended further towards 

the sample center though most samples survived well enough for electrical contact 

deposition.  The samples annealed at 1200 oC were in most cases fully destroyed.   The 

quartz tube and sample boat had been recently etch-cleaned in an HF acid solution, rinsed 

in deionized water (DI), test annealed to 1100 oC, and the furnace had been purged with 

flowing N2 for several minutes prior to sample annealing.  Despite these preparations and 

precautions, there was apparently enough O2 present in the annealing environment to 

form an aluminum oxide on portions of the AlN cap surface.  This oxide was very 

difficult to remove and often required over 40 min of ultrasonic cleaning at 50 oC in 0.3 

M KOH solution to adequately remove.  After considering sputtered AlN as more 

practical as well as potentially having a better thermal integrity, an alternative approach 

with a much greater chance of success was pursued. 

The Search for a Better AlN Encapsulant.   

Theoretically, the best AlN encapsulant should be grown on a clean GaN surface 

free of any contaminants or oxides.  Other factors to consider include AlN thickness and 

growth temperature.  The AlN thickness can influence the extent and onset of cracking 

due to differences in thermal expansion coefficient and lattice constant with the 

underlying GaN.  The growth temperature can influence the degree of adherance to GaN, 

the nature of defects, crystallinity, and surface coverage.  Four different test samples were 

examined in which the AlN was grown on the GaN without breaking the MBE chamber 
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vacuum at thicknesses of 500 and 1000 Å, and growth temperatures of 100 and 750 oC.  

The AlN grown at 100 oC under N-rich conditions was near-amorphous, with a small 

grain size, whereas the AlN grown at the normal MBE growth temperature of 750 oC was 

crystalline.  These samples were annealed from 1200-1250 oC in minimally flowing high 

purity N2 (O2 content less than 1 ppm) in an Oxy-Gon chamber furnace using graphite 

heating elements.  The samples were placed on top of a SiC-coated graphite pedastal in 

the following configurations: open-face, open-face wrapped in tantalum (Ta) foil, and 

face-to-face in Ta foil.  To remove any residual O2 that may have been trapped in the Ta 

foil envelopes, or elsewhere in the chamber, a mid 10-3 Torr vacuum was pulled on the 

chamber, backfilled with N2, a vacuum pulled a second time, and the elements soft-baked 

to 200 oC at low 10-4 Torr before backfilling with N2 again to perform the anneal.  The 

cold-growth-AlN cap samples maintained much better surface morphology than the hot-

growth-AlN cap samples, and the 500 Å thick cold-growth-AlN demonstrated greater 

integrity than the 1000 Å thick AlN.  The Ta foil wrapping appeared to accelerate the 

degradation of the AlN film, while the open-face anneals had the least impact on the AlN 

morphology.  Figure 13 compares the morphology of all four sample types under each of 

the three anneal configurations after annealing at 1250 oC for 3 min.  All photographs 

shown in Figure 13 were taken at the same optical microscope magnification.  Although 

all the samples show varying degrees of pitting, the samples with hot-growth-AlN cap 

wrapped in Ta foil show metallic Ga droplets indicative of significant GaN dissociation, 

whereas the sample with 500 Å thick cold-growth-AlN annealed open face is practically 

unaffected. 
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Figure 13. Morphology of AlN/GaN test samples annealed at 1250 oC for 3 min in 
minimally flowing N2: (a) 500 Å and (b) 1000 Å thick hot-growth AlN (750 oC), (c) 500 
Å and (d) 1000 Å thick cold-growth AlN (100 oC) arranged (i) open-face, (ii) open-face 
in Ta foil, and (iii) face-to-face in Ta foil. 
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AlN Encapsulation During GaN Growth. 

The same basic growth procedures were followed on the second set of implanted 

material, except that after 2 µm growth of GaN, the samples were cooled to about 100 °C 

in the MBE chamber and a 500 Å thick AlN encapsulant was deposited under a N-rich 

condition, which gave the wafers a translucent brown color.  A GaN thickness of 2 µm 

was chosen to minimize the effects of any dislocations originating in the defective 

epi/substrate interfacial layer, thus allowing for a better quality implanted layer.  Because 

the MBE growth technique requires a good thermal path to the wafer, Ti was deposited 

on the backside of the sapphire substrate.  Before cutting the AlN/GaN epiwafers into 

quadrants, the Ti was etched in a 40:1:1 solution of DI, HF, and HNO3 for 3 min, rinsed 

in DI, ultrasonically cleaned in DI for 30 sec, swabbed in DI to fully remove the soot-like 

TiN residue from the sapphire, rinsed again in DI, and blown dry in N2.  The wafer 

quadrants were implanted with Mg, Mg+P, Mg+C, Mg+O, Li, Li+P, and C ions at doses 

of 5x1014 and 5x1015 cm-2 at 800 oC, as well as Mg and Mg+P ions implanted at room 

temperature at a dose of 5x1015 cm-2.  Silicon implantation was performed at six different 

doses ranging from 1x1013 to 5x1015 cm-2 at both room temperature and 800 oC.  

Similarly, Ar implantation was performed with doses of 1x1013, 1x1014, and 1x1015 cm-2 

at both room temperature and 800 oC.  The implantation energy was 200 keV for Si, Mg, 

and Ar, 260 keV for P, 125 keV for C, 160 keV for O, and 55 keV for Li.  The energies 

for all coimplantations were chosen such that the peak of each profile occurred at the 

same depth.  A significant amount of effort was spent understanding and optimizing the 

deposition parameters, anneal conditions, and etch procedures for AlN, because 

protecting the GaN surface from dissociation during annealing is such a critical step in 
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the implantation and activation process.  The following optimized procedures were used 

in this study. 

Optimized Annealing and AlN Removal. 

Each time samples were cut from the AlN/GaN wafers (including the initial 

quadrant cut), photoresist was spun on and baked at 100 oC for 5 min as a protecting 

layer.  After cutting, the samples were soaked for 5 min in acetone to dissolve all 

photoresist and crystal bond wafer adhesive.  The cutting disks on which the samples 

were mounted tended to leave a ceramic residue that was best loosened and removed by 

ultrasonically cleaning the samples in a 3:1 solution of acetone and DI for 20 sec.  

Rinsing in acetone, methanol, DI, then blowing dry with N2 completed the cleaning 

process.  Prior to annealing, the samples were backside scribed with an identifying mark, 

cleaned again in acetone and methanol, and tightly wrapped face-to-face using 5 mil thick 

Ta wire.  Unlike the Ta foil, the Ta-wire had no adverse effects on the AlN encapsulant.  

The 5 mil thickness was thick enough to hold a rigid shape when bent, yet thin enough to 

closely conform to the samples without applying undo stress. 

Samples were annealed from 1250 to 1350 oC for 10 to 20 sec in minimally 

flowing high purity N2 in the Oxy-Gon furnace.  The Ta wire-wrapped samples were 

placed on top of a SiC-coated graphite pedastal.  To remove any residual O2 that may 

have been trapped between the samples, or elsewhere in the chamber, a mid 10-3 Torr 

vacuum was pulled on the chamber, backfilled with N2, a vacuum pulled a second time, 

and the elements soft-baked to 200 oC for 12 min at low-mid 10-5 Torr before backfilling 

with N2 again to perform the anneal under approximately 0.5 PSIG N2.  Although the 

AlN on these samples survived an open face anneal at 1250 oC for 20 sec with near 
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mirror-like morphology, the AlN was considerably pitted after an open face anneal at 

1300 oC for 20 sec.  Therefore, the tight Ta-wire wrapping and O2 removal steps are 

critical to maintain AlN morphology and to ease AlN removal after annealing.  Before 

deciding on the use of Ta wire, samples were annealed in two other configurations: 1) 

face up and capped with a piece of polished sapphire, and 2) capped face-to-face with 

another sample with both caps held in place by the weight of a small SiC-coated graphite 

block.  Due to the likelihood of slippage while securing the furnace door or during the 

anneal itself as well as the obvious benefit of a tight homogeneous AlN-AlN proximity 

cap, the Ta wire wrapping gave results superior to the other proximity techniques.  

Because of the large thermal mass of the graphite heating elements, the sample cooling 

rate was rather slow as seen in Figure 14, which shows the temperature profiles for 

representative ~20 sec anneals at 1250 and 1350 oC in the Oxy-Gon furnace.  Notice that 

due to the low ramp rates, the anneal at 1350 oC for 17 sec spent almost 4 min above 

1200 oC.  To prevent any oxidation on the AlN films, the samples were kept under a 

flowing N2 atmosphere until the chamber’s tungsten-rhenium type C thermocouple (TC) 

read less than 30 oC.  The TC probe tip was suspended above the samples, which were on 

a large graphite puck.  For this reason, the actual sample temperature upon exposure to 

room air was likely as high as 60 oC, though low enough to prevent AlN oxidation. 

Ohmic Contact Deposition. 

After removing the now brittle Ta wire, the two samples should readily slide apart 

with the same mirror-like finish with which they were wrapped.  The AlN survival rate 

after annealing at 1350 oC for 20 sec was approximately 85%.  The AlN was easily and 
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selectively etched by soaking for 5 min at 90 to 95 oC in a 0.5 M KOH solution prepared 

from solid KOH pellets, after which the samples were rinsed in DI and immediately 

placed in boiling aqua regia (3:1, HCl:HNO3) for 2 min.  The samples were then removed 

from the acid, rinsed in DI, blown dry with N2, positioned and secured on a van der Pauw 

geometry contact shadow mask template, and loaded into a BOC Edwards 4-hearth 306 

electron beam evaporator.  Once a base pressure of 2x10-7 Torr was reached, 400 Å of Ti 

was evaporated at an average rate of 16 Å/sec, followed by 1200 Å of Al evaporated at an 

average rate of 22 Å/sec for n-type samples.  For p-type samples, 500 Å of Ni was 

evaporated at an average rate of 18 Å/sec, followed by 1000 Å of Au evaporated at an 

average rate of 32 Å/sec.  The shadow mask template was designed so that the contacts 

were approximately 500 mm in diameter.  The ohmic contacts were annealed in an AG 

Associates Heatpulse 610 RTA face up on a Si wafer thermocouple at 900 oC for 30 sec 

in flowing N2 for n-type, and 600 oC for 2 min for p-type.  Prior to room-temperature Hall 

effect measurements, I-V curves were measured on a probe station with an HP 4155A 

Parameter Analyzer to determine the linearity of the contacts and relative conductivity of 

the samples.  Detailed step-by-step procedures for sample cutting and cleaning, sample 

preparation for annealing, Oxy-Gon furnace annealing, post-anneal contact preparation, 

and electron beam metal evaporation can be found in Appendix B. 

 
Hall Effect Measurements 

 All Hall effect data were taken under a 5 kG magnetic field using a semi-

automated rack mounted Keithley 110 system suitable for high resistivity measurements.  

The forced current ranged from ~10 pA to 30 mA depending on the sample resistivity, 
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and each sample was placed in a closed dewar to eliminate any ambient light effects as 

well as for standardization.  Three different room-temperature measurements over a 

decade of current were performed on each sample and the results for sheet resistivity, 

mobility, and sheet carrier concentration were averaged to increase confidence in data 

accuracy.  The high temperature system, which used tungsten pressure contacts to the 

sample, collected data from 293-800 K, whereas the low-temperature system, which used 

Au wire soldered with indium to the van der Pauw contacts, collected data from 10 to 320 

K.  On both systems the high-impedance connections were used to collect data if the 

applied voltage safety limit of ±10 V was exceeded by attempting to force a current ≤ 1 

mA on the low impedance connections.  Temperature-dependent Hall effect 

measurements were typically run with the current that resulted in 100 to 200 mV during 

resistivity measurements. 

 
Photoluminescence and Cathodoluminescence Measurements 

 PL spectra were collected at a nominal temperature of 3 K using the 275 nm line 

of a Spectra Physics argon-ion laser as the excitation source.  After passing through a 

quartz periscope, laser power into the sample chamber was typically 150 to 200 mW.  CL 

spectra were collected at a nominal temperature of 10 K using a Kimball electron gun 

with an electron beam energy between 1 and 10 keV, a beam diameter of ~1-2 mm, and a 

typical emission current of 25 or 50 µA.  The PL and CL signals were dispersed with a 

¾-m and ½-m spectrometer, respectively, using a 5000 Å blazed grating and a liquid 

nitrogen cooled GaAs PMT detector.  Luminescence data on both systems were collected 

from 1.8 to 3.6 eV (6888 to 3444 Å) using a spectrometer step size of 2 Å, and an 
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integration time of 0.05 sec with spectrometer slits set between 100-400 mm depending 

on sample intensity and desired spectral resolution.  On selected samples, temperature 

dependent PL spectra were collected from 3 to 300 K, and power-dependent spectra were 

collected from 2 to 200 mW using UV-rated neutral density filters.  Detailed PL and CL 

experimental procedures can be found in Appendix B.
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VI. Results and Discussion 

 
Mg-Implanted and Mg-Coimplanted GaN 

 Luminescence studies are perhaps the simplest techniques to determine what 

defect and impurity levels exist within semiconductor bandgaps.  A typical low-

temperature acceptor-doped GaN PL spectrum contains a sharp neutral-donor-bound 

exciton (Do,X) line near the band-edge from 3.46-3.48 eV and a dominant donor-to-

acceptor pair (DAP) band peaking from 3.20-3.29 eV with associated phonon replicas.  

The (Do,X) emission typically dominates as-grown unintentionally doped n-type GaN.  

Lightly acceptor-doped samples may also show neutral-acceptor-bound exciton (Ao,X) 

lines just below the (Do,X) lines.  The DAP band, which is due to transitions involving 

isolated acceptors and residual donors, is often referred to as ultraviolet (UV) 

luminescence because the visible cutoff occurs at 3.17 eV.  When the acceptor 

concentration is increased to the mid 1019 cm-3 range, the UV DAP band is frequently 

quenched and a broader blue luminescence (BL) band peaking from 2.77-2.88 eV begins 

to dominate due to acceptor-related deep donor complexes.  The probability of transitions 

between these deep donor complexes and isolated acceptors significantly increases as the 

acceptor concentration increases.  When acceptors are incorporated, the Fermi level 

approaches the valence band maximum (VBM) enhancing the formation of deep donor 

defect complexes such as MgGa-VN or Mgi-VN. 

Often a broad green luminescence (GL) band centered near 2.4 eV or a broad 

yellow luminescence (YL) band centered near 2.2 eV are observed due to a variety of 

native defects or impurity-related complexes.  The GL and YL bands can either dominate 
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the PL spectrum or be quite weak depending on the concentration of impurities or 

material processing.  Due to Mg’s widespread use as the acceptor of choice, many 

reported PL spectra involve Mg-doped samples.  Most of the reported GaN luminescence 

work has been done on in-situ doped material. 

Hong et. al. reported on the room-temperature CL of Si- and Mg-doped GaN via 

MOCVD.  The Si-doped sample had a line at 3.41 eV and a broad YL band centered at 

2.25 eV.  The Mg-doped sample had a band that peaked at 3.235 eV for Mg 

concentrations less than 1.5x1019 cm-3 but was quenched and replaced by a new band 

centered at 2.88 eV for Mg concentrations of 5x1019 cm-3 or greater (Hong et. al., 1998).  

Obloh et. al. reported room-temperature PL for Mg-doped MOCVD-grown GaN.  For 

Mg-concentrations less than 2x1019 cm-3, the 3.2 eV band dominates, whereas for Mg-

concentrations approaching 5x1019 cm-3 and beyond, the 2.8 eV band dominates.  They 

attributed the 3.28 eV band to free electrons recombining with isolated Mg acceptors 

because the peak does not shift with the changing excitation intensity.  Conversely, 

because the 2.8 eV band blue-shifts with increasing excitation intensity they attributed 

this luminescence to a recombination involving isolated Mg acceptors and deep donors.  

They asserted the deep donors are likely MgGa-VN complexes induced by self-

compensation at higher Mg concentrations (Obloh et. al., 1998). 

Apparently, Mg-implanted GaN is not as likely to exhibit the DAP BL as is in-

situ Mg-doped GaN.  Chi et. al. implanted GaN with 150 keV Mg+ at a dose of 5x1013 

cm-2 and annealed at 1000 oC for 15 s in N2.  PL spectra from the as-grown GaN taken at 

20 K reveal a 3.461 eV (Do,X) line and an intense broad 2.2 eV YL band.  After Mg-

implantation and annealing, PL shows a 3.277 eV DAP peak with phonon replicas and a 
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broad GL band at 2.346 eV, which they attribute to Mg-induced defect clustering (Chi et. 

al., 1998). 

Kim et. al. measured the PL spectra taken at 100 K from Mg-doped and Mg+Si-

codoped MOCVD-grown GaN as a function of Mg and Si incorporation, respectively.  

As the growth ratio of Mg to Ga increased in the Mg-doped sample, a dominant peak 

near 3.25 eV was quenched as peaks at 3.17 and 3.01 grew and were quenched, until a 

2.77 peak was finally dominant.  They attributed the 3.25 and 2.77 eV peaks to DAP and 

deep DAP transitions, respectively, but could not explain the 3.17 eV peak.  The 

quenching of the 3.25 eV line and gradual rise of the 2.77 eV line was attributed to an 

increased transition probability from a deep-donor Mg-related complex to a shallow Mg-

acceptor as the Mg concentration increased (Kim et. al., 1999).  The 3.17 eV peak was 

also seen in MBE-grown Mg-doped GaN.  Grandjean et. al. reported PL taken at 9 K on 

Mg-doped MBE-grown GaN.  Their spectrum for low hole concentrations (< 1017 cm-3) 

was dominated by a 3.26 eV DAP line, but also included a weak near-band-edge line at 

3.465 eV.  At a hole concentration of 3x1017 cm-3, the band-edge line disappeared and 

the DAP peak shifted to 3.17 eV (Grandjean et. al., 1998). 

Skromme and Martinez (2000) implanted Mg and C separately at three different 

energy/dose combinations into GaN and annealed at 1300 oC for 8 s in N2.  Their PL 

spectra from Mg-implanted GaN taken at 1.8 K revealed a 3.476 eV (Do,X) peak 

(dominant in the as-grown material) that decreased with increasing Mg concentration, 

and a 3.470 eV (Ao,X) peak that increased with increasing Mg concentration.  A 3.27 eV 

DAP peak with phonon replicas became the dominant emission at the highest Mg 

concentration of 1x1017 cm-3.  Also present in the spectra of the samples with 1x1016 and 
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1x1017 cm-3 Mg concentrations were a GL band peaking at 2.35 eV, and a weaker RL 

band peaking at 1.73 eV.  They speculated that these two deeper bands might be due to 

Mg-related complexes or to defects whose formation is stimulated by the Fermi level 

moving closer to the VBM as Mg acceptors are activated.  The C-implanted samples 

displayed no (Ao,X) peak and only a weak DAP peak at even the highest dose.  In their 

C-implanted samples, the (Do,X) peak remains dominant and a broad YL band peaked at 

2.2 eV emerges nearly three times more intense than the weak DAP peak.  They surmised 

that the lesser implantation damage produced by the lighter C ions provides fewer 

vacancies for substitution and is thus responsible for the much weaker PL spectra. 

Ronning et. al. implanted Mg separately at 60 and 120 keV at doses from 1x1013 

to 1x1015 cm-2 into GaN and annealed at 1200, 1250, and 1300 oC in vacuum for 11, 30, 

and 10 min, respectively.  After removing the 300 Å AlN encapsulant, low-temperature 

PL spectra was collected on the implanted samples.  The 3.467 eV (Do,X) peak on the 

1x1013 cm-2 sample was largely recovered after the 1300 oC anneal.  A Mg-related DAP 

peak at 3.25 eV with phonon replicas were present on all annealed samples, but had the 

greatest intensity after the 1300 oC anneal.  Also, present on each sample was a broad GL 

band peaking near 2.35 eV.  All samples annealed less than 1250 oC for 30 min were 

highly resistive, whereas Hall effect measurements on other samples showed only n-type 

conductivity.  They suggested annealing for longer periods at higher temperatures to 

obtain electrical activation of the acceptors, while cautioning that beyond 1300 oC the 

AlN cap could oxidize with residual O2 in the vacuum (Ronning et. al., 2000).  It is worth 

noting that no Mg-implanted GaN in the literature whose PL spectrum exhibits a GL 

band has shown p-type conductivity.  This present study characterized Mg-implanted, 
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Mg-coimplanted, as well as C- and Li-implanted GaN to better understand the defect 

levels and centers unique to ion implantation doping so that ion implantation can be 

exploited in future device designs.  The next few sections in this chapter will discuss the 

PL and Hall effect results obtained on these acceptor-implanted samples. 

 
Low-temperature Photoluminescence. 

The PL spectra obtained at 3 K from GaN implanted at 800 oC with Mg at 200 

keV with a dose of 5x1015 cm-2 and annealed at various temperatures are shown in 

Figure 15.  Fabry-Pérot interference fringes can be seen on most of the PL spectra in this 

study.  For comparison, the spectra from as-grown GaN and unimplanted GaN annealed 

at 1250 oC for 18 s are also shown in this figure along with in-situ Mg-doped MOCVD-

grown GaN.  The PL spectra of the as-grown sample shows a typical neutral donor bound 

exciton (Do,X) peak at 3.48 eV, a shallow donor-to-shallow acceptor pair (DAP) peak at 

3.28 eV, and its phonon replica.  After annealing the as-grown GaN at 1250 oC for 18 s, 

its spectra remained about the same, and did not show any significant annealing related 

damage peak other than the weak broad peak centered at 2.64 eV.  One interesting point 

could be that the intensities of both the (Do,X) and DAP peaks of the unimplanted and 

annealed sample rather increased significantly from those of the as-grown sample, which 

may indicate that both luminescence peaks are related to the same donor, possibly a 

nitrogen vacancy.  For the Mg-implanted and annealed samples, the (Do,X) and DAP 

peaks are not observed even after annealing at 1300 oC, but all Mg-implanted samples 

show a broad GL peak centered at 2.37 eV.  Furthermore, this GL peak intensity 

increases as the anneal temperature increases from 1100 to 1300 oC.  The GL peak in 
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Figure 15. PL spectra taken at 3 K for GaN implanted with Mg and annealed at various 
temperatures from 1100-1300 oC.  Also shown are the spectra from two unimplanted 
samples and an in-situ Mg-doped sample. 
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Mg-implanted GaN has been reported previously and attributed to Mg-induced defect 

clustering or to residual implantation defects (Chi et. al., 1998; Skromme and Martinez, 

2000; Ronning et. al., 2000).  Also, the samples annealed at 1250 and 1300 oC show a 

fairly broad weak violet luminescence (VL) peak centered at 3.09 and 3.18 eV, 

respectively.  The 3.09 eV peak has previously been reported for Mg-doped MOCVD 

GaN layers, and is attributed to a Mg-related deep DAP peak (Hess et. al., 1998).  The 

broad peak centered at 3.18 eV for the sample annealed at 1300 oC has been attributed to 

a deepening of the widely accepted DAP peak at 3.28 eV in GaN.  This DAP red-shift 

has been observed in GaN doped with a Mg concentration greater than or equal to 1x1019 

cm-3 (Grandjean et. al., 1998).  TRIM simulation for 200 keV Mg at a dose of 5x1015 

cm-2 implanted into GaN through a 500 Å cap produces a peak concentration of about 

2x1020 cm-3.  At this high Mg concentration, the increased formation of Mg-related deep 

donors reportedly shifts the dominant DAP transition from 3.28 eV to as low as 2.85 eV.  

Thus, the 3.09 and 3.18 eV peaks are likely localized Mg-related DAP transitions with 

associated phonon replicas.  The blue-shift and slight intensity increase of the shallow 

DAP peak as the anneal temperature increases from 1250 to 1300 oC may be due to more 

Mg being incorporated as a substitutional shallow acceptor as well as more crystalline 

lattice damage removal.   The in-situ Mg-doped MOCVD-grown sample shows a broad 

BL band centered at 2.85 eV, whereas none of the Mg-implanted samples show this peak 

which has been attributed to a deep donor to effective mass Mg acceptor (MgGa) 

transition (Kaufmann et. al., 1999). 

Figure 16 shows the PL spectra taken at 3 K from GaN coimplanted at 800 oC 

with Mg and either P, C, or O, and annealed at 1250 oC for 18 s.  The band edge  
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Figure 16. PL spectra taken at 3K for GaN implanted with Mg and various coimplants 
annealed at 1250 oC for 18 s. 
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luminescence peaks were not observed from these dual implanted samples, except the 

Mg+P sample.  Each of these Mg-coimplanted samples shows a dominant GL peak 

occurring at 2.37 eV.  The luminescence peak intensity is weakest for the Mg+P sample 

and strongest for the sample implanted with Mg-alone.  Although the Mg+P spectrum is 

the weakest, it shows a discernible DAP peak at 3.28 eV with phonon replicas and a weak 

(Ao,X) peak at 3.470 eV, as previously reported (Skromme and Martinez, 2000).  Also, 

the Mg+O sample shows a broad peak centered at 2.97 eV, which will be discussed 

further later in Figs. 17 and 23. 

Figure 17 shows the PL spectra taken at 3 K from the dual implanted GaN with 

Mg+C, Mg+O, and Mg+P annealed at two different temperatures.  The former two 

samples were annealed at 1300 and 1250 oC for 9 and 18 s, respectively, and the Mg+P 

sample was annealed at 1250 oC  for 18 s.  The Mg+P sample implanted with a lower 

dose of 5x1014 cm-2 shows a broad BL band centered at 2.75 eV nearly as intense as the 

GL peak.  This 2.75 eV band may be closely related to the widely accepted 2.8 eV peak 

of the deep donor to MgGa transition band.  For the Mg+O samples, the intensity of the 

GL peak at 2.37 eV increased considerably when the anneal temperature is increased 

from 1250 to 1300 oC, whereas the intensity of the GL peak from the Mg+C samples 

rather reduced considerably when the anneal temperature is increased from 1250 to 1300 

oC.  Increasing the anneal temperature from 1250 to 1300 oC for the Mg+O samples 

seems to shift the weak broad BL band centered at 2.97 eV to another broad BL band 

centered at 3.13 eV, similar to the blue-shift observed for the Mg-alone samples as the 

anneal temperature is increased from 1250 to 1300 oC.  However, the individual peaks of 

the Mg+O samples do not occur at the same positions as they do for the Mg-alone  
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Figure 17. PL spectra taken at 3K for GaN implanted with Mg+C, Mg+O, and Mg+P at 
various doses and anneal temperatures. 

 79



samples.  Although the GL peak intensity from the Mg+C sample annealed at 1300 oC 

decreased compared to that of the sample annealed at 1250 oC, the former shows a nicely 

shaped DAP peak at 3.28 eV, implying that a significant amount of the implantation 

damage has been recovered after annealing at this temperature. 

The CL spectra obtained at 10 K from GaN implanted at either 25 or 500 oC with 

200 keV Mg at a dose of 2x1015 cm-2 and annealed at various temperatures for 20 min 

are shown in Figure 18.  These samples are from the set of 1 µm thick GaN capped with 

1000 Å thick AlN after implantation.  A 2.37 eV GL peak which increases with anneal 

temperature dominates each spectrum.  The sample annealed at 1100 oC shows no band-

edge or DAP luminescence indicating that an 1100 oC anneal is insufficient to adequately 

remove implantation damage.  This damage tends to limit all luminescence by preventing 

exciton formation and providing non-radiative recombination paths.  A weak 3.28 eV 

DAP peak with 1LO begins to emerge in the spectra of the two samples annealed at 1150  

oC.  Both samples annealed at 1150 oC show comparable intensities in both GL and DAP 

peaks.  However, the intensity of both the GL and DAP increases in the sample annealed 

at 1200 oC indicating at least more implantation damage removal if not more shallow 

MgGa activation. 

The CL spectra for GaN implanted at 25 oC with Mg, Si, and Mg+Si at a dose of 

2x1015 cm-2 for Mg and 1x1015 cm-2 for Si, and annealed at 1100 oC for 20 min are 

shown in Figure 19.  The Si-implanted sample shows a 2.2 eV YL band and a weak 3.28 

eV DAP peak, whereas the Mg-implanted sample shows only a 2.38 eV GL peak.  The 

Mg+Si-implanted sample shows a dominant 2.35 eV GL peak and a strong 3.28 eV DAP 

peak.  It appears that the shallow DAP activity in the sample implanted with Mg+Si is  
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Figure 18. CL spectra taken at 10 K for GaN implanted with 200 keV Mg at either 25 or 
500 oC and annealed at various temperatures from 1100-1200 oC for 20 minutes. 
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Figure 19. CL spectra taken at 10 K for GaN implanted at 25 oC with Mg, Si, and Mg+Si 
at a dose of 1x1015 cm-2 for Si and 2x1015 cm-2 for Mg, and annealed at 1100 oC for 20 
minutes. 
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due to the presence of both Mg and Si since neither Mg-alone nor Si-alone have such a 

strong peak.  This sample will be discussed further in Figure 20. 

The CL spectra taken at 10 K from GaN coimplanted at either 25 or 500 oC with 

Mg+Si annealed at either 1100 or 1150 oC for 20 min are shown in Figure 20.  All the 

spectra show two distinct peaks:  a DAP peak at 3.28 eV and a GL peak at 2.35 eV.  

Interestingly, the intensity variations of these two peaks show an inverse relationship; 

that is, the higher the DAP peak intensity, the weaker the GL peak intensity.  This may 

indicate that these two peaks are interrelated to the same ion species.  Because the 3.28 

eV DAP peak is due to a transition from a shallow donor, most likely Si, to a shallow 

acceptor, and the 2.35 eV GL peak is Mg-related, we may conclude that the acceptor 

involved in the 3.28 eV peak is MgGa. 

Figure 21 shows the PL spectra taken at 3 K from GaN coimplanted at either 25 

or 500 oC with Mg+Si annealed from 1150 to 1300 oC.  All Mg+Si coimplanted samples 

are from the set of 1 µm thick GaN and are not affected by Fabry-Pérot interference 

fringes, thus allowing greater accuracy in identifying asymmetries, shifts in peak 

positions, and individual peaks within the GL bands.  Consistent with all of the Mg-

implanted material in this study, a strong GL peak is seen in each spectra independent of 

the anneal time or temperature, which, unlike the GL peaks seen in Fig. 18, is asymmetric 

with sub-peaks ranging from 2.30-2.41 eV.  This asymmetry is likely due to the Si 

coimplant producing another deep level from which to transition.  At each anneal 

temperature, the GL from the sample implanted at 500 oC is more intense than from the 

sample implanted at room temperature.  A more interesting observation is the effect of  
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Figure 20. CL spectra taken at 10 K for GaN coimplanted at either 25 or 500 oC with 
Mg+Si at a dose of 2x1015 cm-2 for Mg and 1x1015 cm-2 for Si. Samples were annealed 
at either 1150 or 1100 oC for 20 min. 
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Figure 21. PL spectra for GaN coimplanted at either 25 or 500 oC with Mg+Si at doses of 
2x1014 cm-2 for Mg and 1x1014 cm-2 for Si and annealed at various temperatures from 
1150-1300 oC and times from 15 sec to 20 min.   
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anneal time on the spectra.  A 20-min anneal at 1150 oC produces greater intensity in the 

DAP peaks than an 18-sec anneal at 1250 oC.  The greatest intensity in both GL and DAP 

peaks is seen after annealing at 1300 oC for 15 sec independent of implant temperature.  

This suggests that annealing at lower temperatures requires longer anneal times to 

remove implantation damage and activate implanted ions as efficiently as annealing at 

somewhat higher temperatures for shorter times.  Each of the samples implanted with a 

dose on the order of 1014 cm-2 shows a DAP peak at 3.26 eV with a 1LO peak at 3.17 eV, 

whereas the samples implanted with a dose on the order of 1015 cm-2 show no shallow 

DAP peak.  The sample implanted with a dose on the order of 1015 cm-2 and annealed at 

1250 oC shows only a GL peak, while the sample annealed at 1300 oC shows additional 

peaks at 2.87 and 3.00 eV.  The greater implantation damage in the samples implanted 

with the higher dose at 500 oC appears to require a higher anneal temperature to realize 

DAP activity than do the samples implanted with the lower dose.  Furthermore, such 

DAP transitions are likely to involve deeper levels, perhaps donor and acceptor related 

complexes.  It is also likely that the 2.87 and 3.00 eV DAP transitions involve interim 

deep states and may be supplanted by the more typical shallow states of the 3.28 eV DAP 

transitions as seen from spectrum C in Fig. 20. 

Temperature-dependent Photoluminescence. 

Temperature-dependent PL spectra from GaN implanted at 800 oC with 200 keV 

Mg at a dose of 5x1015 cm-2 and annealed at 1300 oC for 23 s are shown in Figure 22.  

The two primary features of these spectra are a dominant GL band at 2.36 eV and a broad 

VL band centered around 3.15 eV.  The intensity of the VL band has been increased by a  
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Figure 22. Temperature-dependent PL spectra for GaN implanted at 800 oC with 200 keV 
Mg at a dose of 5x1015 cm-2 and annealed at 1300 oC for 23 sec. 
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factor of 5 to better observe its thermal characteristics.  The intensity of the GL band 

remains relatively constant as the temperature is increased from 3 to 150 K, above which  

the intensity drops rapidly.  The GL intensity drops to approximately 50% of its low- 

temperature value at 175 K and to about 2% at 275 K.  As the temperature is increased, 

the peak position of the GL peak blue-shifts 50 meV from 2.36 eV at 3 K to about 2.41 

eV at 275 K.  This temperature induced shift is opposite of the shift expected from the 

variation of the bandgap, which decreases about 54 meV over the same temperature range 

(3-275 K).  However, the blue-shift observed in this GL is typical for defects with strong 

electron-phonon coupling and is predicted by the configuration coordinate model for 

DAP recombinations (Reshchikov et. al., 2001; Zhang and Kuech, 1998).  The GL band 

could be due to a transition from a deep donor-to-deep acceptor (DdAdP) with at least one 

of these levels caused by a Mg-related complex.  Alternatively, the near 50 meV blue-

shift observed in the GL band could be the result of the GL changing from a DAP to a 

(e,Ao) transition as temperature increased from 3 to 275 K.  In this model, approximately 

12 meV of the actual 104 meV shift (50 meV observed + 54 meV to overcome the 

bandgap decrease) is due to the kinetic energy of the thermally excited free electrons.  By 

subtracting the expression for DAP luminescence from that for (e,Ao) luminescence given 

by eqs. (24) and (25), the donor level may be estimated: 

 
2

( )( , )

(275K)(275K) (3K)
2o DAP g g de A

kE E E
r

ω ω
κ

− = − + + −
e . (26) 

An empirical expression for the bandgap energy of GaN as a function of absolute 

temperature is found is Appendix C along with a graph of Eg versus T.  Assuming a 

nominal coulombic energy of 10 meV, the donor level, Ed, associated with the DAP to 
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(e,Ao) GL model is about 102 meV, and the deep acceptor level, Ea, would be about 1.05 

eV.  This acceptor level is perhaps too deep to account for the nearly full quenching of 

the GL peak at a temperature of 275 K.  Thus, the GL is more likely attributed to a Mg-

related DdAdP. 

The intensity of the VL band centered at about 3.15 eV quenches more rapidly 

than the GL band, reaching approximately 50% of its low-temperature value at 50 K.  A 

new peak at 3.31 eV begins to dominate the UV features at 75 K and virtually all 

evidence of the 3.15 band that dominated at low-temperature is gone at 150 K.  The weak 

3.31 eV peak quenches slowly and blue-shifts 60 meV to about 3.37 eV at 225 K.  

Because of its wide bandgap, DAP transitions in GaN frequently involve donor and 

acceptor levels where one level is 200 meV or more deeper than the other.  When the 

donor level is shallower than the acceptor level, the shallow donors will thermally ionize 

as temperature is increased quenching the DAP luminescence.  However, this leaves the 

deeper neutral acceptor levels ready to accept the excited photoelectrons from the 

conduction band via a (e,Ao) transition.  The 3.31 eV peak has been previously attributed 

to a (e,Ao) transition involving Mg (Kaufmann et. al., 1999).  Using equation (24) for 

free-to-bound luminescence at a temperature of 75 K, the 3.31 eV transition corresponds 

to a Mg level of 192 meV which is comparable to the 200 meV value commonly 

reported.  If the band at 3.15 eV is due to DAP transitions involving shallow Mg 

acceptors, then the donor level is easily found.  When 192 meV is used in equation (25) 

along with a nominal coulombic energy of 10 meV, a donor energy of 171 meV is 

obtained.  Although this value is well below the range (280-430 meV) reported for the 
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Mg-related deep donor complex, MgGa-VN, it could account for the quenching of the 3.15 

eV DAP band and subsequent revealing of the weak 3.31 eV (e,Ao) transition. 

Temperature-dependent PL spectra from GaN implanted at 800 oC with Mg+O at 

a dose of 5x1015 cm-2 for Mg and 2x1015 cm-2 for O, and annealed at 1250 oC for 18 s 

are shown in Figure 23.  The two features of these spectra are a dominant GL band at 

2.35 eV and a broad VL band centered at 2.97 eV.  It must be noted that although the GL 

band peaks at 2.373 eV, the band is not centered at 2.373 eV due to the etalon effect.  If 

the etalon peaks were symmetric about the band as they are on the spectrum collected at 

200 K, then the peak intensity would be an accurate measure of the band center.  Due to 

the asymmetry in the etalon peaks, the true band center will be shifted toward the side 

with more luminescence, which in this case is lower in energy.  The intensity of the GL 

peak centered at 2.352 eV remains about the same as the temperature increases up to 150 

K, then slowly decreases as the temperature increases to 230 K, and finally decreases 

rapidly around 260 K.  This temperature-dependent behavior may indicate that this GL 

peak could be due to a transition from an effective-mass acceptor to a deep donor 

complex.  The GL band center blue-shifts about 48 meV from 2.352 eV at 3 K to about 

2.40 eV at 260 K.  The thermal characteristics of the GL band for the sample implanted 

with Mg+O are very similar to the GL band for the sample implanted with Mg-alone seen 

in Fig. 22.  Because of these similarities, the DAP to (e,Ao) GL model will likewise result 

in an acceptor energy too deep to account for both the observed blue-shift and the rate of 

GL thermal quenching.  Based upon the rate of GL quenching with temperature, the GL 

band may be attributed to a DdAdP transition involving complexes, where at least one of  
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Figure 23. Temperature-dependent PL spectra for GaN implanted at 800 oC with Mg+O 
at doses of 5x1015 cm-2 for Mg and 2x1015 cm-2 for O and annealed at 1250 oC for 18 s. 
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the two participating levels is Mg-related.  In the DdAdP model for GL, the observed 

blue-shift is explained by strong electron-phonon coupling. 

The intensity of the broad BL peak centered at 2.973 eV decreases slowly as the 

temperature increases up to 150 K, then quickly quenches above ∼150 K.  This 

temperature-dependent behavior indicates that a level much shallower than either of the 

levels associated with the GL DAP peak is responsible for the 2.973 eV peak.  Sheu et. 

al. grew Mg-doped GaN and attributed a 2.95 eV PL peak at 20 K to a DAP transition 

involving a Mg-related deep acceptor having an energy level of 510 meV above the 

valence band (Sheu et. al., 1998).  Because this sample was implanted with a high dose of 

O, it is reasonable to assume that the shallow donor participating in the transition is O, 

which is reported to have an optical binding energy similar to but slightly higher than that 

of Si (Niebuhr et. al., 1997).  Thus, taking ON to be 40 meV and the coulombic energy to 

be 20 meV results in the observed DAP luminescence energy of 2.973 eV according to 

eqn. (25). 

 Figure 24 shows the temperature-dependent PL spectra from GaN implanted at 

500 oC with Mg+Si at a dose of 2x1014 cm-2 for Mg and 1x1014 cm-2 for Si, and annealed 

at 1300 oC for 23 s.  These spectra show a strong DAP peak with phonon replicas and a 

broad GL band nearly as intense.  This sample was from the set of 1 µm-thick GaN, 

which was not affected by Fabry-Pérot interference fringes.  The intensity of the GL band 

centered at 2.362 eV remains fairly constant as temperature is increased to 150 K, at 

which point it begins to drop quickly and at 250 K is less than 2% of its low-temperature 

value.  The GL band blue-shifts 62 meV as temperature is increased to 250 K where the 

peak occurs at 2.424 eV.  This temperature behavior is very similar to that of the GL  
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Figure 24. Temperature-dependent PL spectra for GaN coimplanted at 500 oC with 
Mg+Si at doses of 2x1014 cm-2 for Mg and 1x1014 cm-2 for Si and annealed at 1300 oC 
for 23 sec. 
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band in the Mg+O- and Mg-implanted samples and further supports the position that the 

GL band is the result of a Mg-related deep donor to deep acceptor transition.  The PL  

intensity of the zero-phonon DAP peak at 3.262 eV drops slowly as temperature is 

increased from 3 K to 25 K, then more rapidly, and finally quenches almost completely 

by 150 K.  The temperature behavior of this undisputed DAP peak is remarkably similar 

to the band attributed to the DAP peak from the Mg-implanted sample seen in Fig. 22. 

The behavior of the DAP bands in the spectra shown in Figs. 8-10 is very different from 

the GL bands observed in all three samples implanted or coimplanted with Mg.  Both 

DAP bands from the Mg- and Mg+Si-implanted samples are fully quenched at 150 K, 

and the DAP band from the Mg+O-implanted sample is still 18% of its low-temperature 

intensity at 180 K.  Although the GL bands don’t fully quench until after 250 K or higher, 

MgGa may still be the responsible acceptor level in the GL DAP transition.  However, if 

this is the case then the corresponding donor level is very likely a Mg-related deep donor 

complex for two reasons.  Firstly, a much deeper level than Mg (on the order of 0.9 eV) 

would be necessary to produce the observed luminescence energy and thermal quench 

rate.  Secondly, due to the high intensity of the GL bands, the samples would not be 

extremely resistive were it not for a proportional concentration of self-compensating 

centers. 

 Li, Li+P, and C were implanted into GaN at 800 oC with doses of 5x1015 cm-2 

and annealed at temperatures from 1200-1300 oC, because both Li and C were reported to 

act as acceptors potentially shallower than Mg.  The corresponding PL spectra taken at 3 

K are shown in Figure 25 along with the spectra from an unimplanted sample annealed at 

1250 oC and the spectra of an in-situ Mg-doped sample.  All samples implanted with  
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Figure 25. PL spectra taken at 3K for GaN implanted at 800 oC with Li, Li+P, and C 
annealed at various temperatures from 1200-1300 oC and times from 9 sec to 5 min.  Also 
shown are the PL spectra for unimplanted GaN annealed at 1250 oC and in-situ Mg-doped 
GaN. 
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Li+P have a characteristic BL peak at 2.85 eV, which is rather similar to the only spectral 

feature of the in-situ Mg-doped sample.  The samples implanted with Li+P also show a  

second peak that blue-shifts from YL to GL as the anneal temperature is increased from 

1200 to 1300 oC.  Both samples implanted with Li-alone show a broad YL-GL band and a 

weak 3.29 eV DAP peak with phonon replica.  The sample implanted with Li and 

annealed at 1200 oC for 5 min also has a weak but broad band-edge peak which is most 

likely a (Do,X) peak.  The two samples implanted with C are dominated by a broad YL 

band centered at 2.19 eV, which is common in unintentionally doped or moderately Si-

doped GaN samples.  Like the sample implanted with Li, the sample implanted with C 

and annealed at 1200 oC for 5 min also shows a (Do,X) peak.  Of the spectra shown in 

this figure, recovery of the exciton peak is limited to single implant samples annealed at 

the lowest temperature, but for a longer time, providing further evidence that a longer 

anneal time may be necessary to more fully remove the implantation damage. 

Electrical Characterization of Acceptor-implanted GaN. 

 In the recent years, a great many attempts have been made to produce highly 

conductive p-type GaN.  Due to the relatively large ionization energy of acceptors in 

GaN and the tendency of many defects in GaN to behave as donors, the pursuit of high 

conductivity p-type GaN has been difficult, especially when doping via ion implantation.  

Although a significant amount of work has been done on acceptor ion-implanted GaN, 

only a limited amount of success has been reported in producing p-type conductive GaN 

via Mg (Rubin et. al., 1994; Pearton et. al., 1995), Ca (Zolper et. al., 1996), or Be (Sun 

et. al., 2000) implantation which is not easily reproducible by other laboratories.  This 

study examined acceptor implanted GaN focusing on the potential advantages of a variety 
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of coimplants, high temperature implantation, novel AlN encapsulant techniques, and 

very high temperature annealing.  Table 3 lists the implanted species, dose, energy, 

implantation temperature, and anneal conditions of the acceptor implanted samples that 

survived annealing and from which electrical and/or optical characterization data were 

collected.  The two different sets of material distinguished by GaN epilayer thickness and 

encapsulation technique are differentiated in Table 3. 

 
Table 3. Acceptor Implantation and Anneal Conditions 

Ion Species Dose 
(cm-2) 

Energy 
(keV) 

Temperature 
(oC) 

Anneal 
Temp (oC) / Time 

 
1000 Å AlN grown after implantation into 1 mm GaN 

Mg 2x1014 200 25 950 / 60 min 
1150 / 15 sec 

Mg 2x1015 200 25 

1100 / 20 min 
1150 / 5 min 
1150 / 20 min 
1200 / 20 min 

Mg 2x1014 200 500 1150 / 15 sec 
1150 / 20 min 

Mg 2x1015 200 500 1150 / 20 min 

Mg 
+Si 

2x1014 
1x1014 

200 
220 

25 
25 

1150 / 20 min 
1250 / 18 sec 
1300 / 5 sec 

Mg 
+Si 

2x1015 
1x1015 

200 
220 

25 
25 

1100 / 20 min 
1250 / 18 sec 

Mg 
+Si 

2x1014 
1x1014 

200 
220 

500 
500 

1150 / 20 min 
1250 / 18 sec 
1300 / 23 sec 

Mg 
+Si 

2x1015 
1x1015 

200 
220 

500 
500 

1250 / 18 sec 
1300 / 23 sec 
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Ion Species Dose 
(cm-2) 

Energy 
(keV) 

Temperature 
(oC) 

Anneal 
Temp (oC) / Time 

Implantation through 500 Å AlN into 2 mm GaN 

Mg 5x1015 200 800 

1100 / 5 min 
1150 / 5 min 
1200 / 5 min 
1250 / 18 sec 
1300 / 23 sec 
1350 / 17 sec 

Mg 5x1014 200 800 
1250 / 19 sec 
1300 / 23 sec 
1350 / 17 sec 

Mg 5x1015 200 25 1250 / 18 sec 
1300 / 23 sec 

Mg 
+P 

5x1015 
5x1015 

200 
260 

800 
800 

1200 / 5 min 
1250 / 18 sec 
1300 / 23 sec 
1350 / 17 sec 

Mg 
+P 

5x1014 
5x1014 

200 
260 

800 
800 

1250 / 19 sec 
1300 / 23 sec 
1350 / 17 sec 

Mg 
+P 

5x1015 
5x1015 

200 
260 

25 
25 

1250 / 18 sec 
1300 / 23 sec 

Mg 
+C 

5x1015 
5x1015 

200 
125 

800 
800 

1200 / 5 min 
1250 / 18 sec 
1300 / 9 sec 
1350 / 17 sec 

Mg 
+C 

5x1014 
5x1014 

200 
125 

800 
800 1350 / 17 sec 

Mg 
+O 

5x1015 
2x1015 

200 
160 

800 
800 

1200 / 5 min 
1250 / 18 sec 
1300 / 9 sec 
1350 / 17 sec 

Mg 
+O 

5x1014 
2x1014 

200 
160 

800 
800 

1250 / 19 sec 
1350 / 17 sec 

Li 5x1015 55 800 
1200 / 5 min 
1250 / 18 sec 
1300 / 9 sec 

Li 
+P 

5x1015 
5x1015 

55 
260 

800 
800 

1200 / 5 min 
1250 / 18 sec 
1300 / 9 sec 

Li 
+P 

5x1014 
5x1014 

55 
260 

800 
800 

1250 / 19 sec 
1350 / 17 sec 
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Ion Species Dose 
(cm-2) 

Energy 
(keV) 

Temperature 
(oC) 

Anneal 
Temp (oC) / Time 

C 5x1015 125 800 
1200 / 5 min 
1250 / 18 sec 
1300 / 9 sec 

C 5x1014 125 800 1250 / 19 sec 
 

 An important consideration in obtaining p-type GaN is the background electron 

concentration that must be overcome to convert the film to p-type.  An additional factor 

when doping via ion implantation is the carrier contribution from residual implantation 

defects or defects thermally generated by the high-temperature anneal.  These 

contributions can be accounted for by implanting the GaN with neutral Ar ions, and then 

annealing the Ar-implanted material and unimplanted material under identical conditions.  

The room-temperature background electron concentration of the GaN epitaxial layers in 

this study were less than 1015 cm-3 for as-grown, ∼1015 cm-3 after annealing at 1200 oC 

for 5 min, and only 1.5x1015 cm-3 after annealing at 1350 oC for 17 sec. 

The first step in performing electrical characterization of the Mg single and dual 

implanted GaN samples was ohmic contact deposition.  Although the Ni/Au metallic 

bilayer thickness ratio was determined from a survey of the literature, determining the 

temperature and time of the optimum contact anneal was hindered by highly resistive 

samples.  The detailed procedures outlined in the previous chapter produced ohmic 

contacts on in-situ Mg-doped p-type GaN and were used on all acceptor implanted 

material.  I-V curves were measured on a probe station and used as a benchmark to 

provide a quick qualitative check on the resistivity of each sample.  Empirically, Hall 

effect measurements reliably determined the conductivity type only on samples having 

ohmic contacts that passed at least 1 mA of current when 5 V was applied.  In the absence 
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of reliable Hall effect data due to the extreme resistivity of most Mg single and dual 

implanted GaN samples, I-V curves offered the only insight on electrical activation of 

implanted acceptors.  Table 4 summarizes the range of currents obtained with 5 V applied 

on the 2 mm-thick GaN samples implanted and annealed per Table 3. 

 
Table 4. Range of currents on acceptor implanted and annealed samples 

Implants 5x1015 cm-2, 800 oC 5x1014 cm-2, 800 oC 5x1015 cm-2, 25 oC 
Mg Noise (§ 10 pA) 5 nA-0.8 mA Noise 

Mg+P 0.6-3 mA 1.7-4 mA 0.7 mA 
Mg+C Noise 32 nA - 
Mg+O Noise 1.5-3.5 mA - 

Li 1.2-6 mA - - 
Li+P 7-45 mA 14-260 mA - 

C 4-10 mA 2-3 mA - 
 

All of the Mg single and most of the Mg dual implanted GaN samples became 

extremely resistive, and did not show a definite p-type conductivity even after annealing 

at 1350 oC for 17 sec under a nitrogen environment.  Furthermore, the samples did not 

show any p-type conductivity and remained highly resistive even at a sample temperature 

as high as 800 K.  The samples implanted with Mg+P, Mg+Si, Li, Li+P, and C, showed 

n-type conductivity, but only the samples coimplanted with Li+P and annealed at 1250 

oC or higher had electron concentrations larger than the correspondingly annealed 

unimplanted samples.  The sheet resistivities, electron mobilities, and sheet electron 

concentrations for each of these samples are shown in Table 5. 

For the samples implanted with Li+P and C, as well as the unimplanted samples, 

the sheet resistivity decreases with increasing anneal temperature, while the electron 

concentration increases.  The opposite trend is observed for samples implanted with 

Mg+P at a dose of 5x1014 cm-2 perhaps indicating that more Mg has become electrically 
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Table 5. Hall Effect Data for Mg+P-, Mg+Si-, Li-, Li+P-, and C-implanted GaN at 300 K 

Ion Species 
Implant 

Dose (cm-2) 
/ Temp(oC) 

Anneal 
Temp (oC) / 

Time 

Sheet 
resistivity 
(KW/□) 

Mobility 
(cm-2/Vs) 

Electron 
Concentration 

(cm-2) 
5x1015 / 800 1200 / 5 m 1,600 132 2.94x1010 

1250 / 19 s 654 223 4.29x1010 Mg+P 5x1014 / 800 1300 / 23 s 1,090 152 3.75x1010 
1x1014 / 25 1300 / 5 s 5,640 31 3.51x1010 Mg+Si* 1x1014 / 500 1150 / 20 m 4,840 10 1.30x1011 

Li 5x1015 / 800 1250 / 18 s 1,330 64 7.39x1010 
1200 / 5 m 384 182 8.96x1010 
1250 / 18 s 20.9 147 2.04x1012 Li+P 5x1015 / 800 
1300 / 9 s 1.98 154 2.04x1013 
1200 / 5 m 1,040 134 4.48x1010 
1250 / 18 s 368.5 278 6.10x1010 C 5x1015 / 800 
1300 / 9 s 328 255 7.45x1010 
1250 / 18 s 150 191 2.20x1011 Unimplanted - 1300 / 9 s 94 229 2.93x1011 

* Data from the sample annealed at 1150 / 20 m was collected at 400 K. 
 

active and further compensates the electron concentration.  The data shown in Table 5 do 

not contradict what has been reported in the literature on acceptor implanted GaN, but 

rather confirm earlier published conclusions and provide additional insights and 

understanding. 

Pearton et. al. reported p-type GaN resulting from Mg coimplanted with P in late 

1995.  Mg and Mg+P were implanted at a dose of 5x1014 cm-2 into unintentionally doped 

n-type (n ≤ 4x1016 cm-3) MOCVD-grown GaN epilayers on c-plane sapphire.  Both 

samples were annealed for 10 s with a face-to-face proximity cap in a SiC coated graphite 

susceptor between 700 and 1100 oC.  Only the coimplanted sample converted from the 

background n-type to p-type conductivity after annealing at 1050 oC.  Though remaining 

n-type, the resistivity of the Mg singly implanted sample increased likely due to the 

compensating Mg-activation.  Assuming an ionization energy for Mg of 150 meV, they 
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reported an activation percentage of Mg in the Mg+P coimplanted sample of 62% 

(Pearton et. al., 1995).  The purpose of the equivalent dose P coimplant was to maintain 

stoichiometry by introducing Ga vacancies into which the Mg could more readily 

substitute, while simultaneously reducing the concentration of N vacancies, which are 

believed to complex with substitutional MgGa forming deep donors. 

Edwards et. al. also studied ion implantation into GaN by implanting multiple 

energy/dose Mg, and Mg+P coimplants from room temperature up to 800 oC into 

MOCVD-grown unintentionally doped n-type and semi-insulating GaN epilayers on c-

plane sapphire.  All samples were annealed in an N2 ambient for 120 s face-up in a SiC 

coated graphite susceptor at 1150 oC.  The unencapsulated samples showed evidence of 

dissociation when annealed above 1050 oC; therefore the SiC susceptor lid was placed in 

close contact with the samples which then maintained pre-anneal morphology.  They 

expected the P coimplant to suppress the interstitial diffusion of Mg, which is known to 

occur in narrow gap III-V compounds; however, they noticed a significant redistribution 

of Mg under this anneal condition.  This redistribution of Mg is surprising given a report 

by Wilson et. al., who detected no motion of Mg implanted at a dose of 5x1014 cm-2 into 

GaN and annealed at 1450 oC for 10 s (Wilson et. al., 1999).  As shown in the PL spectra 

of this present study, perhaps anneal time has a greater effect on damage removal and 

implant redistribution than currently believed. 

Most significant is Edwards’ inability to obtain p-type conductivity in any of 

these samples, but rather only highly resistive material.  Apparently, neither implantation 

temperature nor conductivity of the as-grown GaN epilayer (either n-type or semi-

insulating) had any effects.  Acceptor passivation can be ruled out because annealing at 
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1150 oC is more than adequate to fully remove the H-passivation of acceptors common to 

MOCVD-grown epilayers.  Measuring carrier concentration at 300 oC likewise resulted 

in highly resistive material, which would indicate that either insufficient acceptors were 

activated (which is unlikely after an 1150 oC anneal), or that there is a much greater 

concentration of implantation- or anneal-induced compensating defects.  They did not 

understand why they were unable to obtain p-type conductivity, nor did they report any 

luminescence characterization of their samples implanted with Mg and Mg+P (Edwards 

et. al., 1997).   In this present study, correlating PL or CL spectra with I-V curves and 

Hall effect measurements has provided valuable insights into why p-type conductivity 

was not obtained. 

Ronning et. al. implanted Be alone and coimplanted Be and N into MOVPE-

grown unintentionally doped n-type GaN epilayers on c-plane 6H-SiC.  Implantation 

doses ranged from 1x1013 to 2.5x1014 cm-2 with an equal dose of N in the coimplanted 

samples to determine the effect of N on the activation of Be acceptors.  All samples were 

sequentially annealed at 300, 600, and 900 oC for 10 min each in vacuum followed by 1 

hour anneal under a flux of atomic N at 1100 oC.  A comparison of the PL spectra 

indicated that N coimplantation did not enhance Be activation.  X-ray diffraction (XRD) 

data indicates that after the 10 min 900 oC anneal, structural damage from the 2.5x1014 

cm-2 dose Be implant is fully recovered.  However, PL data shows that after annealing 

for 1 hour at 1100 oC, point defects are still present attributing to the low optical 

activation of Be.  Due to residual point defects, the samples were too highly resistive for 

Hall measurements.  The authors concluded that annealing up to 1300 oC is necessary to 

 103



fully recover the point defects and electrically activate the Be acceptors (Ronning et. al., 

1999). 

These conclusions (Ronning et. al., 1999) regarding activation of acceptors in 

GaN were also reported by Zolper et. al. (1997a) following the work of Pearton et. al. 

(1995).  Zolper coimplanted Mg+P at equal doses from 2x1014 to 5x1015 cm-2 into 

MOCVD-grown GaN epilayers on c-plane sapphire.  Samples were annealed in a SiC 

coated graphite susceptor in flowing N2 for 15 s at 1100 oC.  This RTA failed to obtain p-

type conductivity for all Mg+P implant doses.  In fact, the samples implanted with Mg+P 

at doses from 2x1014 to 1x1015 cm-2 resulted in a sheet electron concentration greater 

than the samples implanted with Si at the same doses.  This is a very interesting 

occurrence which will discussed later.  The authors concluded that the Mg acceptors are 

being compensated by either implant induced point defects or another impurity in the as-

grown material.  They further surmised that annealing above 1100 oC may be required to 

fully remove implant damage thereby optimizing carrier concentrations. 

This present study confirms some of the conclusions of Zolper et. al. (1997a) and 

Pearton et. al. (1995), but provides further valuable insight.  Not only is GaN implanted 

with Mg-alone compensated by residual lattice damage, but Mg is a participant in this 

self-compensation by forming deep complexes as evidenced by a dominant GL band in 

the PL spectra of all Mg implanted samples.  Furthermore, these Mg-related deep 

complexes form independent of the 25, 500, or 800 oC implantation temperature and 

remain thermally stable even at anneal temperatures as high as 1350 oC, indicating a very 

high binding energy.  The GL band was also present in samples implanted with Mg-alone 

after annealing at just 1050 oC for 15 s, indicating a very low formation energy.  
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Therefore, one may conclude the deep complex responsible for the GL band in the PL 

and CL spectra is much more energetically favorable than isolated MgGa under ion 

implantation and annealing conditions.  It is important to note that the only feature in the 

PL of the in-situ Mg-doped sample from Fig. 15 is a BL band at 2.85 eV.  This sample 

had a room-temperature hole concentration and mobility of 1.25x1017 cm-3 and 16 

cm2/V·s, respectively.  In almost no circumstances has the PL spectrum of a p-type in-situ 

Mg-doped sample been reported to show a GL band.  The GL band is predominantly seen 

in acceptor-implanted GaN, and can therefore be attributed to deep complexes formed 

between the acceptor ion and implantation defects.  Another key observation is that the 

deep complexes responsible for the GL form independent of and despite various 

coimplants designed to control stoichiometry (P and C coimplantation) or enhance p-type 

conductivity by forming reactive donor-acceptor dipole pairs (Si or O coimplantation).  

The intensity of the deep donor-deep acceptor pair (DdAdP) GL band relative to the 3.28 

eV DAP is reduced only in samples implanted with Mg+Si (Fig. 20).  However, in the 

latter case, in addition to forming deep complexes, Mg is also compensated by shallow Si 

donors.  Despite its lower dose, at sufficiently long (1150 oC for 20 min) or high (1300 oC 

for 23 sec) anneal times, Si prevails over the highly compensated Mg and the samples 

become n-type.  Considering all the Mg- implanted samples in this study, the Mg+P 

samples were uniquely n-type.  The PL spectra of each Mg+P sample reveals the same 

dominant GL band but also UV DAP activity and a broad BL band centered near 2.75 eV 

that tends to increase with increasing electron concentration.  Although the samples 

implanted with Mg+P in this study were n-type, the sheet electron concentrations were 

over an order of magnitude less than the electron concentrations obtained by Zolper et. al. 
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(1997a), who implanted Mg+P at the same doses. Also, the Mg+P samples in this study 

had nearly an order of magnitude less electron concentration than the unimplanted 

samples under the same anneal conditions.  Therefore, although the P coimplants in this 

study did not enhance Mg activation as they did for Pearton et. al. (1995), they certainly 

did not produce a greater electron concentration than an equivalent dose of Si implants 

would as they did for Zolper et. al. (1997a).  Nonetheless, the exact nature of the P 

coimplants contributing to electron concentration is unknown.  In this study, P coimplants 

were also used with Li. 

The investigation of Li as an acceptor in GaN was in part motivated by some 

work in SiC.  Ramungul et. al. implanted Be as an alternative acceptor into SiC to form 

P+N junctions and achieved nearly a factor of 5 increase in diode forward current over 

similarly implanted and annealed B-implanted SiC (Ramungul et. al., 1999).  Be in SiC 

has one less electron than the typical group III acceptor.  Similarly, the alkalis (Li and 

Na) in GaN have one less electron than the typical group II acceptor.  Neugebauer and 

Van de Walle stated that Lii is a donor, but LiGa is a double acceptor in GaN although Li 

suffers from poor solubility (Neugebauer and Van de Walle, 1999).  The latter 

characteristic is not an ion implantation concern since implantation is a non-equilibrium 

process where acceptor activation is not limited by the same thermodynamic 

considerations.  Li has a covalent radius of 1.23 Å, which is much closer to Ga’s covalent 

radius of 1.26 Å than is Be’s.  Dalmer et. al. reported that for implantation temperatures 

of 700 K (427 oC), Lii
+ starts to diffuse and presumably interacts with vacancies created 

in the implantation process leading to the formation of substitutional Li (Dalmer et. al., 

1998).  Ronning et. al. used emission channeling to determine that more than 60% of the 
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Li ions implanted at 300 K are substitutional when annealed at 770 K or when implanted 

at 700 K.  They state that due to Li’s low stability on the N-sublattice, Li will substitute 

for Ga (Ronning et. al., 2000).  LiGa behaves as a double acceptor in GaN with 1st and 2nd 

thermal ionization energies of 0.16 and 0.63 eV, respectively, which is comparable to Mg 

as a shallow acceptor.  Interstitial Li, Lii, is highly favored over LiGa unless there are 

sufficient VGa available, which should be true after ion implantation.  Researchers have 

estimated that isolated or distant Lii and VGa pairs will recombine to the energetically 

favorable LiGa above 600 K (Bernardini and Fiorentini, 2000). 

 Based on this, one could hypothesize that implanting Li into GaN at implantation 

temperatures greater than 500 oC should provide near 100% electrical activation of the Li 

atoms.  Because there are likely many more vacancies produced during implantation than 

the number of implanted ions, there should be a large concentration of donor-like 

interstitial Ga, Gai, as well as other implantation-induced defects.  Annealing the 

implanted GaN will be required to recombine the Gai with the VGa; however, the 

remaining Gai will likely compensate the activated LiGa.  Removal of the residual Gai 

displaced by the implanted ions could be accomplished by codoping with an equal dose 

of P or N ions to maintain stoichiometry.  Apparently, the problem with implanting Li to 

obtain p-GaN is not the activation of Li, but the elimination of compensating defects. 

 Although the potential behavior of Li as an acceptor in GaN has been 

theoretically investigated, this study may be the first to discuss the electrical and optical 

characteristics of Li and Li+P implanted into GaN.  The Li-implanted sample had the 

lowest mobility of all the acceptor implanted samples in Table 5, and a sheet electron 

concentration 3 times less than that of the unimplanted sample annealed under the same 
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conditions.  Based on the PL spectra of Fig. 25, the Li-implanted samples’ DAP peak and 

weak exciton peak indicate reasonably good damage recovery.  The YL suggests the 

presence of slightly different deep donor and/or deep acceptor compensating levels than 

those responsible for the GL in Mg-implanted GaN.  It is likely that after annealing the 

implanted Li ions are acting as shallow acceptors, remaining as interstitial donors, and 

participating in self-compensating complexes.  As experienced with the samples 

coimplanted with Mg+P, the P coimplant, intended to enhance the activation of Li 

acceptors, appears to have had an opposite effect in the samples implanted with Li+P.  

The electron concentration in these samples increases rapidly with anneal temperature 

from 1200-1300 oC.  The net effect at 1300 oC is equivalent to about 0.4% activation of 

Li donors.  Although P is isoelectronic on the N-sublattice, the significant increase in 

electron concentration over that of Li-alone seems to suggest that P may be doing more 

than just filling N vacancies.  Optically, P clearly causes deeper levels in the bandgap as 

the 3.29 eV DAP peaks in the single Li-implanted samples are replaced by a rather 

intense 2.85 eV peak in the Li+P implanted samples.  This 2.85 eV peak, albeit 100 meV 

higher in energy, may be similar in nature to the 2.75 eV peak observed in the Mg+P 

implanted samples. 

Carbon is widely used as an acceptor in GaAs and has been favored as an 

acceptor in GaN primarily because of its theoretically lower ionization energy; however, 

carbon is only reported to have produced p-type GaN when doped in-situ via MOMBE.  

All other attempts to dope GaN with C, including ion implantation, have resulted in n-

type GaN (Wilson et. al., 1999), or at best heavily compensated, highly resistive material.  

Although C may prefer the N-sublattice, self-compensation is expected to dominate 
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beyond a certain concentration as amphoteric C also substitutes on the Ga-sublattice 

(Boguslawski and Bernholc, 1997).  For this reason, coimplantation of Mg+C was 

investigated in an attempt to produce p-type GaN by increasing the probability of CN vice 

CGa.  The fact that C-alone implantation produces only n-type GaN was expected.  It is 

reasonable to assume however, that more of the implanted C ions were activated as 

shallow acceptors (CN) than as self-compensating donors (CGa) because the sheet electron 

concentration of a sample implanted with C and annealed at 1300 oC for 9 sec was 4 

times less than an unimplanted sample after the same anneal.  Based on the dominant GL 

band in the PL spectra of samples coimplanted with Mg+C (Fig. 17), there was most 

likely still a significant amount of implanted Mg forming deep complexes and only 

enough shallow MgGa activated to compensate the residual donors resulting in highly 

resistive material.  On the other hand, the PL spectra from the samples implanted with C-

alone are dominated by a YL band, which has been widely reported for n-type GaN 

doped with Si or unintentionally doped, as well as for C-doped GaN (Zhang and Kuech, 

1998).  It is interesting to note that this YL band is not uniquely caused by implantation 

damage because it does not appear on samples implanted with Mg, nor is it unique to 

samples containing shallow Si donors (SiGa) for it dominates the spectra of GaN 

implanted with C.  Thus, the YL appears to be generic to n-type GaN, which is known to 

favor the formation of Ga vacancies over N vacancies.  Nonetheless, n-type GaN may be 

a necessary, but by itself an insufficient condition for YL, because the unimplanted and 

annealed material used in this study is more n-type than the samples implanted with C, 

yet it shows no YL.  If more C ions were substitutional on the N-sublattice after 

annealing, then an increased concentration of Ga vacancies would likely occur and help 
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account for the YL.  It is also worth noting that of all the acceptor implanted samples, the 

only three that showed any exciton peaks had n-type conductivity. 

Surprisingly, the most conductive sample implanted with Mg alone was implanted 

at 25 oC with a dose of 2x1014 cm-2 and annealed at 1150  oC for 15 sec.  As discussed 

later in the section on Si-implanted GaN, the higher conductivity of this sample is 

possibly due to a combination of the moderate Mg dose and 25 oC implantation 

temperature.  Although Hall measurements were unable to determine conductivity type, 

temperature-dependent reistivity data fit very well as shown in Figure 26.  An activation 

energy of 204 meV was extracted from the slope of the Arrhenius plot.  Even though this 

value is within 15 meV of the measured thermal ionization energy for Mg reported by 

(Kozodoy et. al., 2000), the observed decrease in resistivity cannot be reliably attributed 

to Mg, because the conductivity type could not be reliably determined. 

The conductivity type of the sample coimplanted at 500 oC with Mg+Si at a dose 

of 2x1014 cm-2 for Mg and 1x1014 cm-2 for Si and annealed at 1100 oC for 20 min could 

not be determined at 300 K.  However, this sample had an electron concentration of ∼1015 

cm-3 at 400 K and remained weakly n-type up through 800 K.  Assuming only one donor 

was responsible for the increase in carrier concentration with temperature, an ionization 

energy of about 150 meV was extracted from the slope of the line best fit to carrier 

concentration.  Because the temperature-dependent concentration of this sample closely 

matches that of an unimplanted sample, it is more likely that this carrier concentration is 

due to residual implantation defects or thermally activated intrinsic defects than from Si.  

 110



1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

22

23

24

25

26

27

Temperature (K)

GaN:Mg
2x1014 cm-2

200 keV at 25oC
Anneal: 1150oC / 15s

EA = 204 meV

 

 

Lo
g 

(R
es

is
tiv

ity
 * 

T3/
2 ) [

ln
(Ω

 /s
q*

K3/
2 )]

1000/T (K-1)

650600 550 500 450 400 350 300

Figure 26. Arrhenius plot of resistivity data from GaN implanted at 25 oC with Mg at a 
dose of 2x1014 cm-2 and annealed at 1150 oC for 15 sec. 
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The effects of single Si implantation on the electrical and optical properties of GaN are 

much more pronounced and will be discussed in the next two sections of this chapter. 

 
Silicon Implanted into GaN at Room Temperature 

 Although ion implantation as a tool for doping semiconductors has become a 

mature technology in Si- and GaAs-based devices, the technique is less well developed 

for GaN.  The two key applications for ion implantation in semiconductor device  

technology are high conductivity ohmic contact layer regions using high dose 

implantation and field effect transistor channel layer doping using low dose implantation.  

Silicon is the primary donor species for producing n-type III-V semiconductors because 

of its low mass, shallow ionization energy, and the ease of forming a Si ion beam.  The 

activation efficiency of Si implanted into GaAs decreases with implantation dose.  This is 

likely due to less implantation damage in the lower doses as well as an increase in the 

amphoteric tendency of Si, which increasingly occupies both Ga and As sublattices as the 

dose is increased.  Pearton reported an electron concentration of ~2x1018 cm-3 as the 

practical limit in high dose Si-implanted GaAs due to self-compensation (Pearton, 1988).  

It should be noted that electrical activation refers to the percentage of implanted 

Si ions that contribute an electron to the conduction band, whereas donor activation 

represents the percentage of substitutional donors.  The difference between the two 

activations is due to the donor ionization energy.  Electrical activation is calculated 

simply by dividing the room-temperature sheet carrier concentration, ns, by the implanted 

dose, f.  If one implants through an encapsulant, the implanted dose must be reduced to 

the actual dose, fact, that came to rest in the GaN epilayer.  Furthermore, the background 
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carrier concentration measured on unimplanted or Ar-implanted and annealed samples, 

ns,bg, must be subtracted from the carrier concentration measured on the Si-implanted 

samples, as necessary.  Assuming the percentage of ionized donors is proportional to the 

factor exp , the donor activation efficiency is calculated by ( /d BE k T− )
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 Recent studies indicate that Si-implanted GaN may not suffer from self-

compensation; however, the lower doses have experienced problematic activation.  

Zolper et. al. implanted GaN with 100 keV Si ions at doses from 5x1013 to 1x1016 cm-2 

and annealed samples at 1100 oC for 15 s in a SiC-coated graphite susceptor.  They 

reported negligible activation for doses below 5x1015 cm-2, but electrical activation as 

high as 50% for an implant dose of 1x1016 cm-2 (Zolper et. al., 1997b).  Dupius et. al. 

reported only 19% electrical activation for GaN implanted at room temperature through a 

500 Å AlN cap with 100 keV Si ions at a dose of 5x1014 cm-2 and annealed at 1150 oC 

for 5 min in flowing nitrogen (Dupius et. al., 1999).  Molnar et. al. implanted a total dose 

of 4.4x1014 cm-2 Si ions with multiple energies at room temperature and annealed at 

1150 oC for 2 min.  Assuming a donor ionization energy of 26 meV, they calculated a 

donor activation of only 1% (Molnar et. al., 1996).  Higher activation efficiencies have 

been reported for higher doses of Si implantations annealed at higher temperatures.  Cao 

et. al. reported electrical activation efficiency as high as 90% for 100 keV Si ions 

implanted into GaN at room temperature with a dose of 5x1015 cm-2 and annealed at 

1400 oC for 10 s.  Their samples were capped with 1000 Å AlN after implantation and 
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sealed in a quartz ampoule under 15 psi of N2 for annealing (Cao et. al., 1998).  Many 

activation studies of Si-implanted GaN report the results of only a single implantation 

dose annealed at a single temperature, while some others discuss Si activation 

dependence on implantation dose or anneal temperature, but not both.  The understanding 

they provide is range-limited, lacking the comprehensive details regarding activation 

efficiencies as a function of dose and anneal temperature.  A detailed study of this type is 

valuable for optimizing or engineering advanced electronic and optoelectronic GaN 

device applications requiring low- to high-dose implantations. 

 This study provides a systematic, comprehensive investigation of Si-implanted 

MBE-grown GaN as a function of implantation temperature, anneal temperature, and to a 

lesser extent, anneal time to optimize the ion implantation conditions for low- to high-

dose implants. The remainder of this chapter will discuss the room-temperature and 

temperature-dependent Hall effect measurements as well as the low-temperature and 

temperature-dependent PL spectra for Si implanted at both 25 and 800 oC.  The PL and 

Hall effect results from both Si- and Ar-implanted GaN will be correlated to provide a 

synergistic understanding of Si activation. 

Room-Temperature Hall Effect Measurements. 

GaN wafers capped with 500 Å AlN were implanted at room temperature with 

200 keV Si ions with doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1050 to 

1350 oC from 5 min to 17 sec in a flowing nitrogen environment.  The sheet carrier 

concentrations as determined from room-temperature Hall effect measurements on this 

set of samples are shown in Figure 27.  Data from a representative sample implanted at 

25 oC with 200 keV Ar ions at a dose of 1x1013 cm-2 shows the effect of the residual  
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Figure 27. Room-temperature sheet electron concentrations for GaN implanted at room 
temperature with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and 
annealed at 1050 to 1350 oC from 5 min to 17 sec in a flowing nitrogen environment. 
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implantation damage on the GaN background carrier concentration.  Data from 

unimplanted samples annealed from 1250 to 1350 oC are also included for comparison to 

show the effects of high temperature annealing on the GaN background carrier 

concentration.  The set of curves shown in this figure provides a complete picture of sheet 

carrier concentration as a function of anneal temperature and ion dose.  An open-tube 

furnace was used to anneal the samples at temperatures from 1050-1200 oC for 5 min,  

while an Oxy-Gon furnace was used to anneal the samples from 1250-1350 oC for an 

average of 15 sec.  Recall from Fig. 14 in Chapter 5 that the slow ramp rates on the Oxy-

Gon furnace cause the samples to remain above 1100 oC for up to several minutes despite 

a dwell time at the quoted anneal temperature of only 15 sec.  The electron concentration 

is highly dependent upon implantation dose and annealing temperature, and increases 

steadily up through 1350 oC for each of the six doses. 

Figure 28 shows the electrical activation efficiency for all Si-implanted samples 

using an effective dose because of the AlN cap.  For example, a nominal dose of 1x1014 

or 5x1014 cm-2 produces an effective dose of 9.51x1013 or 4.75x1014 cm-2 within the 

GaN, respectively.  Thus, for each implanted dose, only 95% of the implanted ions come 

to rest within the GaN.  Generally, the higher the dose, the greater the activation 

efficiency at any given anneal temperature.  The highest dose of 5x1015 cm-2 displays 

significant activation (> 20%) even after annealing for only 1100 oC for 5 min and an 

excellent activation (~ 90%) after annealing at just 1300 oC for 23 sec.  This is one of the 

highest reported activation efficiencies for Si implanted at a dose of 5x1015 cm-2, and is 

about 7% greater than the activation reported by Cao et. al. (1998) for the same dose at 

the same anneal temperature.  The 100% electrical activation obtained for the sample  
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Figure 28. Electrical activation efficiency for GaN implanted at room temperature with 
200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1050 to 
1350 oC from 5 min to 17 sec in a flowing nitrogen environment. 
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implanted with a dose of 1x1015 cm-2 and annealed at 1350 oC for 17 sec is the highest 

known to be reported for that dose.  Even the sample implanted with the lowest dose of 

1x1013 cm-2 and annealed at 1350 oC for 17 sec shows an unprecedented electrical 

activation of 40%.  The electrical activation efficiencies for all six doses increase fairly 

linearly with annealing temperature.  The highest two doses show 90% or better 

activation efficiency after annealing at 1300 oC, reaching near maximum efficiency after 

annealing at 1350 oC.  The lower four doses show rapid increases in activation efficiency 

with increasing annealing temperature from 1250 to 1350 oC.  This indicates that the 

optimum anneal temperature for these doses may be higher than 1350 oC.  The data 

reveal that the optimum anneal temperature for Si-implanted GaN is dose dependent with 

lower doses requiring higher anneal temperatures to maximize electrical activation 

efficiency.  The lowest dose of 1x1013 cm-2 displays measurable activation (1%) only 

after annealing at 1250 oC.  Figure 29 shows sheet carrier concentration versus effective 

implantation dose.  The 100% electrical activation line clearly shows concentration very 

nicely approaching 100% activation as the dose is increased. 

In addition to carrier concentration, mobility is also a key parameter for 

characterizing the suitability of semiconductor layers for device applications.  Many 

researchers have shown that although the electrical activation of high-dose Si-implanted 

GaN begins at anneal temperatures as low as 1050 oC, there still remains a considerable 

amount of radiation damage at this anneal temperature.  This damage is often structurally 

characterized using techniques such as Rutherford Back-scattering (RBS), X-ray 

diffraction (XRD), or X-ray transmission electron microscopy (XTEM), though PL 

spectra can reveal the optical nature of radiation damage as we shall see later in this  

 118



1013 1014 1015 1016

1011

1012

1013

1014

1015

1016

100 % Activation

GaN:Si, 200 keV
25 oC implant
              TA    / time

1350 oC / 17 s
1300 oC / 22 s
1250 oC / 21 s
1200 oC / 5 m
1150 oC / 5 m
1100 oC / 5 m
1050 oC / 5 m

 

 

Sh
ee

t C
ar

rie
r C

on
ce

nt
ra

tio
n 

(c
m

-2
)

Actual Implanted Si Dose (cm-2)

Figure 29. Sheet carrier concentration versus actual implanted dose for GaN implanted at 
25 oC with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 
1050 to 1350 oC from 5 min to 17 sec in a flowing nitrogen environment. 
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chapter.  Clearly, poor electrical activation causes low carrier concentration and low 

mobility as the inactive Si and residual damage serve as scattering centers degrading 

electron mobility.  However, electrical activation of implanted Si on the order of 50% can 

occur despite mobility limiting residual implantation damage.  This seems to imply that 

some of the residual defects are electrically inactive, acting primarily to limit mobility  

and quench band-edge luminescence (Zolper et. al., 1997a).  Figure 30 shows the 

electron Hall mobility for all six doses as well as for unimplanted GaN as a function of 

anneal temperature.  The mobilities increase considerably as anneal temperature is 

increased up to 1350 oC for all doses.  After annealing at 1350 oC, the mobility values are 

higher for the lower doses.  The highest mobility obtained at room temperature is about 

250 cm2/V·s on the sample with the lowest dose of 1x1013 cm-2, while the lowest 

mobility of almost 100 cm2/V·s was found on the sample with the highest dose of 5x1015 

cm-2.  These values of mobility are much higher than reported values of mobility on 

samples implanted at the same dose.  Zolper et. al. implanted 100 keV Si+ into GaN with 

a dose of 5x1015 cm-2, annealed at 1100 oC for 15 s in a SiC-coated graphite susceptor, 

and reported a mobility of less than 10 cm2/V·s (Zolper et. al., 1997b).  The mobility 

obtained in this study for the same dose and anneal temperature is at least twice as large.  

This is likely due to further damage removal from the 5 min anneal duration at 1100 oC 

versus only 15 s.  Cao et. al. reported a constant mobility of 43 cm2/V·s for Si-implanted 

GaN with a dose of 5x1015 cm-2 after annealing at 1300 and 1400 oC for 10 s (Cao et. al., 

1998).  The mobility of the samples implanted with a dose of 5x1015 cm-2 in this study 

increased from 84 to 96 cm2/V·s as anneal temperature increased from 1300 to 1350 oC.  

These values demonstrate not only a mobility twice as large but also further improvement  
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Figure 30. Room-temperature Hall mobility for GaN implanted at room temperature with 
200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1050 to 
1350 oC from 5 min to 17 sec in a flowing nitrogen environment. 
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even after annealing at 1350 oC.  Furthermore, unlike Cao’s samples that were sealed in a 

quartz ampoule under 15 psi of N2 for annealing, the samples in this study were merely 

held tightly face-to-face.  The only report of mobilities of ~100 cm2/V·s for Si-implanted 

GaN was achieved under extreme annealing conditions.  Zolper et. al. implanted 100 keV 

Si+ into GaN at a dose of 5x1015 cm-2 and annealed from 1250 to 1500 oC for 15 min 

under N2 pressures from 10 to 15.3 kbar.  The samples were uncapped as the high N-

overpressure suppressed GaN decomposition.  Despite evidence from RBS spectra 

indicating the implantation damage was completely removed only after annealing at 1500 

oC for 15 min in 15.3 kbar N2, the mobility values for all samples were ~100 cm2/V·s.  

This saturated value illustrates that their mobility had already peaked as a result of the 

anneal at 1250 oC.  Furthermore, even with the extreme anneal conditions, the electrical 

activations of the implanted Si were only 46 and 88% for the anneals at 1250 and 1500 

oC, respectively (Zolper et. al., 1998).  Data presented in Figs 27-30 show that higher 

carrier concentrations, greater electrical activation, and potentially higher mobility have 

been achieved in the present study for Si-implanted GaN under more practical annealing 

conditions. 

Table 6 compiles the data from Figs. 27-30 and also adds sample sheet resistivity. 

The most interesting point to make on Table 6 is that the mobilities and carrier 

concentrations increase with anneal temperature for every dose in spite of the increased 

ionized impurity scattering from an increased number of active donors.  This trend 

suggests that although substantial damage has been removed at each successive anneal up 

to 1350 oC, even further damage recovery and electrical activation are possible for 

anneals beyond 1350 oC. 
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Table 6. Room-Temperature Hall Effect Data for Si implanted into GaN at 25oC 
Implant 

Dose 
(cm-2) 

Implant 
Temp. 
(oC) 

Anneal 
Condition 
(oC / time) 

Sheet 
Resistivity 

(W/□) 

 
Mobility 
(cm2/V·s) 

Sheet 
Conc. 
(cm-2) 

Activation 
Efficiency 

(%) 
       
- - 1250 / 18s 150,000 190.5 2.20 x 1011 - 
- - 1300 / 9s 93,500 225 2.93 x 1011 - 
- - 1350 / 17s 86,440 245 2.96 x 1011 - 
       

1 x 1013 25 1350 / 21s 37,410 201.4 8.30 x 1011 Argon 
       

1 x 1013 25 1250 / 21s 186,300 290.2 1.16 x 1011 1 
1 x 1013 25 1300 / 22s 26,810 134.9 1.73 x 1012 18 
1 x 1013 25 1350 / 17s 6,358 245.5 4.00 x 1012 42 

       
5 x 1013 25 1250 / 21s 13,910 72.1 6.23 x 1012 13 
5 x 1013 25 1300 / 22s 2,440 143.2 1.79 x 1013 38 
5 x 1013 25 1350 / 17s 1,092.8 189.5 3.02 x 1013 64 

       
1 x 1014 25 1250 / 21s 3,620 81.0 2.13 x 1013 22 
1 x 1014 25 1300 / 22s 934.7 145.6 4.59 x 1013 
1 x 1014 25 1350 / 17s 701.7 145.8 6.46 x 1013 68 

       
5 x 1014 25 1250 / 21s 379.0 66.3 2.49 x 1014 52 
5 x 1014 25 1300 / 22s 165.3 100.8 3.75 x 1014 79 
5 x 1014 25 1350 / 17s 128.7 111.1 4.37 x 1014 92 

       
1 x 1015 25 1250 / 21s 150.5 63.7 6.52 x 1014 69 
1 x 1015 25 1300 / 22s 79.4 86.7 9.08 x 1014 95 
1 x 1015 25 1350 / 17s 60.1 108.8 9.56 x 1014 100 

       
5 x 1015 25 1050 / 5m 2380.5 8.0 3.28 x 1014 7 
5 x 1015 25 1100 / 5m 299.6 20.6 1.01 x 1015 21 
5 x 1015 25 1150 / 5m 90.8 36.9 1.86 x 1015 39 
5 x 1015 25 1200 / 5m 37.8 58.7 2.82 x 1015 59 
5 x 1015 25 1250 / 21s 25.8 67.0 3.62 x 1015 76 
5 x 1015 25 1300 / 23s 17.5 84.0 4.26 x 1015 90 
5 x 1015 25 1350 / 7s 15.1 96.1 4.31 x 1015 91 

48 
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Temperature-Dependent Hall Effect Measurements. 

The sheet carrier concentrations determined from temperature-dependent Hall 

measurements taken from 10 to 800 K for a sample from each of the six doses annealed  

at 1350 oC for 17 sec are shown in Figure 31.  The carrier concentration of the 

unimplanted sample annealed at 1300 oC for 9 sec is also shown in the figure.  The scale 

of the 1000/T axis is split at 20 K-1 (50 K), and an expanded 1000/T scale is used for 

greater clarity in the regime where sheet carrier concentration is most sensitive to 

temperature.  The carrier concentrations for each of the six doses kept increasing as 

temperature increased above about 200 K and showed no signs of saturation even at a  

sample temperature of 800 K, except perhaps on the lowest dose sample of 1x1013 cm-2.  

The sheet concentration of the unimplanted sample begins to saturate at 500 K, which 

will be discussed more fully later in Figure 34.  The flat temperature-independent carrier 

concentration seen on all but the lowest dose sample of 1x1013 cm-2 indicates the 

formation of a degenerate impurity band.  The critical doping density for GaN at which 

the Mott transition occurs and all donors are ionized independent of temperature is 

calculated from eqn. (16) to be 8.84x1017 cm-3.  The TRIM calculated implantation 

profiles for 200 keV Si ions through a 500 Å AlN cap into GaN at doses of 5x1013 and 

1x1014 cm-2 are shown in Figure 32.  The peak volume concentrations of Si donors for 

the two doses are 2.81x1018 and 5.62x1018 cm-3, respectively.  Thus, the peak 

concentration of the sample implanted with a dose of 1x1013 cm-2 is still below the Mott 

transition, whereas the peak concentrations of all other doses exceed the critical Mott 

concentration.  Furthermore, most of the implanted region for the higher doses contains a 
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Figure 31. Temperature-dependent sheet electron concentrations taken from 10-800 K for 
GaN implanted at room temperature with 200 keV Si ions at doses ranging from 1x1013 
to 5x1015 cm-2 and annealed at 1350 oC for 17 sec in a flowing nitrogen environment. 
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Figure 32. Calculated implantation profiles for 200 keV Si ions through a 500 Å AlN cap 
into GaN at doses of 5x1013 and 1x1014 cm-2. 
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Si concentration higher than the Mott transition.  The dip in the carrier concentration 

curves seen in Figure 31 may indicate multi-layer conduction (Look and Molnar, 1997).  

Because of the Gaussian implantation profile, the carrier concentration of the degenerate 

layer is non-uniform.  Additionally, most of the implanted layer is degenerate; the 

remainder is non-degenerate.  The carrier concentration of the sample implanted with a 

dose of 5x1015 cm-2 is almost entirely temperature-independent from 10-800 K, as 

expected for a case of extreme degeneracy due to a peak Si concentration of almost 

3x1020 cm-3. 

As electrical activation and therefore the concentration of ionized donors 

increases, impurity screening will effectively reduce the donor ionization energy as 

described in equation (17).  There are basically two different techniques for determining 

the effective ionization energy from Hall effect measurements, both of which require 

either sheet carrier concentration or sheet resistivity as a function of temperature.  The 

first technique is the simplest and assumes that the carrier concentration is proportional to 

T 3/2exp(-Ed / kBT).  Temperature dependence of this form was seen in equation (8), 

though the actual expression for the free carrier concentration in an extrinsic 

semiconductor is derived from equation (13).  Resistivity has a temperature dependence 

reciprocal to that of carrier concentration.  Whether resistivity or carrier concentration is 

used, the ionization energy is extracted from the slope of the least-squares fit on an 

Arrhenius plot.  There is no standardized approach for this graphical technique in the 

literature, and the data are routinely plotted as either ln(ns), ln(nsT -3/2), ln(rs), or ln(rsT 

3/2).  The second technique involves fitting measured sheet carrier concentrations 

converted to volume carrier concentrations as a function of temperature to the charge 
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balance equation, eqn. (13).  The parameters varied in the fit are the ionization energy, 

the dopant volume concentration, and the volume concentration of compensating 

acceptors.  Multiple donor levels can be easily incorporated in the curve-fitting 

technique; however, one must exercise caution to ensure realistic fit values when the 

measured data is from a non-uniform implanted layer.  Using these two techniques to 

determine ionization energy, the reported values for Si in GaN range from 17 to 29 meV.  

One report stated an ionization energy as high as 62 meV; however this value was 

calculated from zincblende b–GaN and should not be used for wurtzite a–GaN.  Götz et. 

al. reported ionization energies for in-situ Si-doped MOCVD GaN that ranged from 15-

12 meV for Si concentrations of 2-9x1017 cm-3, respectively (Götz et. al., 1996).  Dupius 

et. al. measured an ionization energy of 15 meV for a Si-implanted sample with a room-

temperature sheet carrier concentration of 9x1013 cm-2 (Dupius et. al., 1999).  Zolper et. 

al. measured a much lower value of 3.4 meV for a Si-implanted sample with a room- 

temperature sheet carrier concentration of 1.75x1015 cm-2 as expected from a degenerate 

concentration (Zolper et. al., 1997a). 

The graphical technique was used to determine the Si ionization energy in this 

study, and the results for each of the six Si-implantation doses annealed at 1350 oC for 17 

sec are shown in Figure 33.  The data used in the least squares fit were taken at sample 

temperatures from 120-800 K.  The extracted apparent ionization energies vary 

significantly from 2.5 to 74 meV, and the actual ionization energy of isolated Si could 

only be estimated from the sample implanted at 1x1013 cm-2.  The relatively low apparent 

ionization energies measured on the samples with the highest three doses is attributed to 
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Figure 33. Measured ionization energies for GaN implanted at room temperature with 
200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 
17 sec in a flowing nitrogen environment. 
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the formation of a degenerate impurity band from the Si-implanted region.  The relatively 

high apparent ionization energies measured on the samples with the lowest three doses 

are attributed to the effect of a deeper level donor activation that becomes dominant at 

higher sample temperatures once the lower concentration of shallow Si donors is all 

ionized.  This effect is clearly seen in Figure 34 as the slope of the Arrhenius plot for the 

sample implanted at 1x1013 cm-2 sharply increased from 15 to 74 meV above 300 K.  In 

the figure, the carrier concentration of the sample implanted at 1x1013 cm-2 is influenced 

when the carrier concentration of the unimplanted sample becomes comparable.  Only the 

sample implanted at 1x1013 cm-2 distinctly shows two donor levels.  The lower ionization 

energy of 15 meV can be attributed to the shallow Si donors, whose peak volume 

concentration at this dose is about 6x1017 cm-3.  However, due to the Gaussian implant 

profile and because the Hall effect measures an average sheet concentration, less than 

half this peak value is a better estimate for the Si volume concentration in the implanted 

layer.  Thus, 15 meV corresponds to the ionization energy of Si at a concentration of 

about 2x1017 cm-3, which agrees very well with the 14 meV ionization energy reported 

for a 2.3x1017 cm-3 Si concentration in in-situ doped GaN (Götz et. al., 1996).  

Interestingly, the n-type background of all unimplanted samples, whether they are 

annealed or not, is not due to a shallow donor but rather a deep donor whose ionization 

energy is about 190 meV. 

 Figure 35 shows the temperature-dependent Hall mobility for the same set of 

samples discussed in Figs. 31 and 33.  The peak mobilities decrease from 258 to 108 

cm2/V·s as the implantation dose is increased from 1x1013 to 5x1015 cm-2.  This is due to  
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Figure 34. Measured ionization energies for GaN implanted at room temperature with 
200 keV Si ions at a dose of 1x1013 cm-2 and annealed at 1350 oC for 17 sec along with 
unimplanted GaN annealed at 1300 oC for 9 sec in a flowing nitrogen environment. 
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Figure 35. Temperature-dependent Hall mobility taken from 10-800 K for GaN implanted 
at room temperature with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 
and annealed at 1350 oC for 17 sec in a flowing nitrogen environment. 
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increased ionized impurity and polar optical phonon lattice scattering.  The most 

interesting feature of these mobility curves is their low-temperature behavior shown with 

greater resolution in the inset.  As the implantation dose increases from 1x1013 to 5x1015 

cm-2, the mobilities at 10 K increase from 3 to 97 cm2/V·s.  As theoretically predicted, 

the mobility of the non-degenerate sample implanted with a dose of 1x1013 cm-2 

approaches zero at 0 K and increases rapidly with temperature where ionized impurity  

scattering is dominant.  As the implantation dose is increased, the degenerate impurity 

band causes the low-temperature mobility to become more temperature independent and  

to increase with doping concentration because the Fermi velocity of the electrons is 

greater than their thermal velocity.  The increasing influence of the degenerate impurity 

band in the three highest dose samples is further shown by a general flattening of the 

mobility curve.   

 The temperature-dependent sheet resistivity from 10-800 K for the same set of 

samples annealed at 1350 oC for 17 sec is shown in Figure 36.  As the implantation dose 

is increased from 1x1013 to 5x1015 cm-2, the room-temperature resistivity decreases 

proportionally from 6,350 to 15 W/□.  Only the samples implanted with the three lowest 

doses, which are least affected by the degenerate impurity band, show any appreciable 

decrease in resistivity with increasing temperature.  A slight knee on the curve from the 

sample implanted with a dose of 1x1013 cm-2 occurs slightly above 300 K.  This is due to 

the effect of a deeper donor level that becomes dominant once the lower concentration of 

shallow Si donors are all ionized as seen previously in Figs. 33 and 34.  The samples 

implanted with the three highest doses, whose carrier concentration and mobility vary 

little with temperature, have resistivities that are relatively temperature independent.  The  
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Figure 36. Temperature-dependent sheet resistivity taken from 10-800 K for GaN 
implanted at room temperature with 200 keV Si ions at doses ranging from 1x1013 to 
5x1015 cm-2 and annealed at 1350 oC for 17 sec in a flowing nitrogen environment. 

 134



resistivity for all implantation doses increases in the high-temperature region as the 

carrier concentration·mobility product decreases.  Recall from equation (11) that 

resistivity may be expressed as ( ) 1

n pe n pρ µ µ
−

 = +   where e is the elementary charge, 

and n (p) and mn (mp) are the concentration and mobility of electrons (holes), respectively. 

 The anneal temperature dependence of the temperature-dependent Hall effect 

measurements were investigated on GaN implanted with Si at a dose of 5x1014 cm-2, and 

the results are shown in Figs. 37 and 38.  Figure 37 shows the extracted ionization 

energies from the slope of the least-squares fit on an Arrhenius for samples annealed 

from 1250 to 1350 oC for an average of 20 sec.  The energies vary moderately from 8.6 to 

18.4 meV.  As anneal temperature is increased, the ionization energies decrease due to 

increased screening effects and widening of the impurity band as a greater percentage of 

Si donors are activated.  The relative changes in the three ionization energies as anneal 

temperature is increased are proportional to the corresponding changes in sheet carrier 

concentration.  Figure 38 shows the mobility curves for the same set of samples 

implanted with Si at a dose of 5x1014 cm-2 and annealed from 1250 to 1350 oC for an 

average of 20 sec.  As anneal temperature is increased, the peak mobility increases from 

about 72 to 112 cm2/V·s and the temperature at which the peak value occurs decreases 

from about 480 K to 300 K. 

Low-Temperature Photoluminescence. 

Before presenting the spectra for the Si-implanted GaN, is it important to examine 

the features and anneal temperature behavior of the spectra for the unimplanted material.  

The PL spectra taken at 3 K for the as-grown and unimplanted GaN annealed from 1250  
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Figure 37. Measured ionization energies for GaN implanted at room temperature with 
200 keV Si ions at a dose of 5x1014 cm-2 and annealed from 1100 to1350 oC for 5 min to 
17 sec in a flowing nitrogen environment. 
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to 1350 oC are shown in Figure 39.  Each of these spectra show a typical (Do,X) peak at 

3.49 eV and a dominant DAP peak at 3.29 eV with phonon replicas.  The as-grown 

spectrum, whose intensity has been increased by a factor of 5, reveals a weak YL band at 

2.26 eV typical for unintentially-doped n-type GaN.  The as-grown YL band is 

supplanted by a BL band centered at 2.65 eV, whose peak becomes ⅓ as intense at the  

 (Do,X) peak after annealing at 1350 oC for 17 s.  The intensities of the (Do,X) and DAP 

peaks in the unimplanted GaN remain largely unaffected when anneal temperature is 

increased from 1250 to 1350 oC. 

The PL spectra taken at 3 K for GaN implanted at room temperature with 200 

keV Si ions with doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 

17 sec in a flowing nitrogen environment are shown in Figure 40.  In general, these 

spectra show a (Do,X) peak at 3.487 eV, a DAP peak at 3.28 eV with phonon replicas, 

and a broad YL band centered at 2.2 eV.  Also shown in Fig. 40 is the spectrum for the 

unimplanted sample annealed at 1350 oC for 17 sec, whose intensity has been reduced by 

a factor of 5.  The intensity of the (Do,X) peaks from each Si-implanted spectrum except 

for the highest dose has also been reduced by a factor of 5 for easier viewing and 

comparison.  All spectra reveal a (Do,X) peak that decreases in intensity and broadens 

with increasing dose.  The near band-edge broadening begins on the low energy side of 

the (Do,X) peak in the sample implanted with a dose of 5x1013 cm-2 and is due to band 

tailing.  Recall that at a dose of 5x1013 cm-2, the peak of the implant profile exceeds the 

Mott concentration causing random band-edge fluctuations and band tailing.  At a dose of 

5x1014 cm-2, the free carrier concentration is high enough to initiate noticeable band 

filling.  This is seen as a broadening on the high energy side of the (Do,X) peak above the  

 138



1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

2.61  2.70
2.26

x5
As-grown

1250oC / 18s

1300oC / 9s

1350oC / 17s

Unimplanted GaN:
PL:  T = 3 K, Pw = 150 mW,
                                275 nm

Wavelength (nm)

 

Lu
m

in
es

ce
nc

e 
In

te
ns

ity
 (a

rb
. u

ni
ts

)

Photon Energy (eV)

650 600 550 500 450 400 350

Figure 39. PL spectra taken at 3 K for unimplanted GaN as-grown and annealed at 1250, 
1300, and 1350 oC from 9 to 17 sec in a flowing nitrogen environment. 
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Figure 40. PL spectra taken at 3 K for GaN implanted at room temperature with 200 keV 
Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 17 sec in 
a flowing nitrogen environment. 
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bandgap.  Luminescence from the band tailing and filling is most intense on the sample 

implanted with a dose of 1x1015 cm-2.  Though weaker in intensity, the band tailing and 

filling on the sample implanted with the highest dose produces a very broad band-to-band 

transition extending from 3.1 to 3.7 eV.  The interference patterns shown as lower energy  

shoulders of the (Do,X) peak on the two highest dose samples are spaced too closely to be 

LO replicas or to be caused by the etalon effect. 

The (Do,X) and DAP peaks are the most intense on the sample with the lowest 

dose.  As the dose increases from 1x1013 to 1x1014 cm-2, the zero-phonon DAP peak 

blue-shifts 6 meV and its FWHM broadens by about 25 meV.  This is because at higher 

doses there are many more closer donor-acceptor pairs as well as a wider donor impurity 

band.  All evidence of DAP transitions have disappeared on the spectra from the two 

highest doses because the donor band has merged with the conduction band.  After 

annealing at 1350 oC, the unimplanted GaN has nearly 5 times the DAP intensity that the 

sample implanted with a dose of 1x1013 cm-2 has.  However, the sample implanted with a 

dose of 1x1013 cm-2 has nearly 4 times the (Do,X)  intensity and over 10 times the sheet 

carrier concentration that the unimplanted sample has. 

The intensity of the YL band is fairly weak on the lowest-dose spectrum but 

increases by almost an order of magnitude and becomes the strongest for the next highest 

dose, 5x1013 cm-2.  The intensity of the YL band decreases as the dose further increases, 

and no YL is observed for the highest dose of 5x1015 cm-2.  This YL has not been 

observed in any of the Mg-implanted GaN in this study and appeared when Si-alone was 

implanted.  This may indicate that this YL is closely related to a Si-related complex or a 

complex or defect that has a low formation energy in n-type GaN.  Despite a small 
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ambiguity introduced by the Fabry-Pérot oscillations, the YL appears to peak at 2.2 eV 

independent of implantation dose.  Overall, the features of the low-temperature PL 

spectra are well correlated with the Hall effect measurements as a function of 

implantation dose for samples annealed at 1350 oC for 17 sec. 

The sharpness (FWHM of about 16 meV) and intensity of the (Do,X) peak from 

the lowest dose sample correlate well with the high mobility obtained on this sample.  

Both the exciton peak and the high mobility observed from low-dose Si-implanted GaN 

indicate excellent implantation damage recovery after annealing at 1350 oC for 17 sec.  

Clearly, the sample implanted with the lowest dose has suffered the least implantation 

damage and exhibited the most complete damage recovery after annealing according to 

PL data.  However, unlike Si-implanted GaAs, which shows higher Si activation at lower 

implantation doses, Si-implanted GaN experiences lower Si activation for lower 

implantation doses.  Tan et. al. implanted 90 keV Si into GaAs and GaN at 77 K with 

doses from 1x1012 to 9x1017 cm-2 and characterized the damage with ion channeling.  

They reported that a dose of 4x1013 cm-2 completely amorphized the GaAs, whereas the 

same dose in GaN produced a channeling yield comparable to the unimplanted GaN (Tan 

et. al., 1996).  Clearly, GaN is a robust material that suffers much less implantation 

damage than GaAs does for a given ion mass at nominal doses.  Chan and Chen 

implanted C and C+Ar into GaAs with doses from 5x1012 to 1x1014 cm-2 and 

characterized the samples with Hall effect measurements.  They reported that C+Ar 

coimplantation produced 100% C activation compared to only 25% with C-alone 

implantation.  Additionally, they reported that C activation increased by as much as 70% 

as the coimplantation dose increased from 5x1012 to 5x1013 cm-2 at a single anneal 
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temperature.  In all cases the increased activation was attributed to increased implantation 

damage, which increased vacancies, crucial for enhancing activation (Chan and Chen, 

1993).  The activation of Si-implanted GaN in this present study also increased 

significantly as the implantation dose was increased.  It may be that although low-dose Si 

activates well in GaAs, it does not activate well in the more structurally robust GaN.  A 

possible explanation is that Si activation in GaN, like C activation in GaAs, is enhanced 

by implantation damage. 

The PL spectra taken at 3 K for GaN implanted at room temperature with 200 

keV Ar ions with doses ranging from 1x1013 to 1x1015 cm-2 and annealed at 1350 oC for 

22 sec in a flowing nitrogen environment are shown in Figure 41.  In general, these 

spectra show a (Do,X) peak at 3.487 eV, a DAP peak at 3.28 eV with phonon replicas, 

and a broad YL band centered near 2.2 eV.  Also shown in Fig. 41 is the spectrum for the 

unimplanted sample annealed at 1350 oC for 17 sec, whose intensity has been reduced by 

a factor of 10.  The intensities of all three luminescence features from the Ar-implanted 

samples are the strongest on the sample implanted with the lowest dose.  As the dose 

increases, the intensity of the (Do,X) peak, the DAP peak, and the broad YL band all 

decrease. 

 The PL spectra taken at 3 K for GaN implanted with Si at a dose of 1x1013 cm-2 

and annealed from 1250 to 1350 oC for 22-17 sec in a flowing nitrogen environment are 

shown in Figure 42.  As in the previous figure, the intensity of the (Do,X) peak on the 

spectrum from the sample annealed at 1350 oC has been reduced by a factor of 5 for 

easier viewing.  The spectrum from the sample annealed at 1250 oC shows only a weak  
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Figure 41. PL spectra taken at 3 K for GaN implanted at room temperature with 200 keV 
Ar ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 22 sec 
in a flowing nitrogen environment. 
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Figure 42. PL spectra taken at 3 K for GaN implanted at room temperature with 200 keV 
Si ions at a dose of 1x1013 cm-2 and annealed at 1250, 1300, and 1350 oC for 
approximately 20 sec in a flowing nitrogen environment. 
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concentration increased by factors of about 18 and 2, as anneal temperature was increased 

to 1300 and 1350 oC, respectively.  Thus, the improvements in PL spectral intensity after 

annealing at 1300 and 1350 oC are attributed to both more Si activation and further lattice 

damage recovery. 

Temperature-Dependent Photoluminescence. 

Temperature-dependent PL spectra from GaN implanted at room temperature 

with 200 keV Si at a dose of 5x1013 cm-2 and annealed at 1350 oC for 17 sec in a flowing 

nitrogen environment are shown in Figure 43.  The three features shown in the spectra are 

a (Do,X) peak, a DAP peak with phonon replicas, and a YL band with Fabry-Pérot 

interference reflections.  The sharp and intense (Do,X)  peak at 3.487 eV decreases 

monotonically, broadens, and red-shifts by about 63 meV as temperature increases from 3 

to 300 K.  This red-shift is due to the thermal characteristics of the GaN bandgap which 

decreases by about 66 meV over the same temperature range.  The intensity of the DAP 

peak at 3.289 eV and its phonon replicas also decrease monotonically as temperature 

increases, maintaining 50% and 1% of its original intensity at 100 and 200 K, 

respectively, but totally disappearing above 200 K.  This temperature dependence, similar 

to that seen on the 3.28 eV DAP peak in the Mg+Si coimplanted sample (Fig. 24), is 

attributed to the ionization of the shallow Si donor.  The intensity of the broad YL band 

behaves very differently than that of the (Do,X)  and DAP peaks dropping to only about 

50% of its low-temperature value at 300 K.  As the temperature is increased from 3 to 

300 K, the peak position of the YL band red-shifts about 13 meV from 2.212 to 2.199 eV.  

Although this red-shift is not as large as the bandgap reduction with temperature, it is 

noticeably different from the 50 meV blue-shift seen on the GL band in the spectra from  
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Figure 43. Temperature-dependent PL spectra (3-300 K) from GaN implanted at room 
temperature with 200 keV Si ions at a dose of 5x1013 cm-2 and annealed at 1350 oC for 
17 sec in a flowing nitrogen environment. 
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the Mg-implanted samples.  This YL also quenches less rapidly with temperature than 

does the GL band.  This behavior indicates a deeper level, less susceptible to thermal 

ionization, is responsible for the YL band. 

There is still much debate in the literature concerning the nature of the YL in n-

type GaN.  Several of the most likely explanations are described below.  The nature of 

the YL in GaN can be explained by one of two models: 1) an electron either in the 

conduction band or at a shallow donor transitions to a deep acceptor, (e-Ao) or DAdP, 

respectively, 2) an electron occupying a deep donor level transitions to either the valence 

band or an acceptor, (Do-h) or (DdAP), respectively (Shalish et. al., 1999).  As early as 

1980, the YL in GaN was attributed to a transition between a shallow donor and a deep 

acceptor (Ogino and Aoki, 1980).  In 1996, Neugebauer and Van de Walle theoretically 

determined that the Ga vacancy or its related complexes formed the deep acceptor 

responsible for the YL in GaN.  Complexes typically form due to the energy gained when 

a negatively-charged acceptor is attracted to a positively-charged donor.  Because the 

dominant native defect in n-type GaN is the triple acceptor, VGa, the most likely 

complexes to form should be the double acceptors, VGa-SiGa and VGa-ON (Neugebauer 

and Van de Walle, 1996).  Yang et. al. doped GaN with Si concentrations from 4.5x1017 

to 5.2x1018 cm-3 and collected room-temperature PL spectra.  Finding that the YL 

intensity decreased with increasing Si concentration, they attributed the YL to Ga 

vacancies, whose concentration should decrease as more Si substitutes on the Ga 

sublattice (Yang et. al., 1999).  Schubert et. al. doped GaN with Si concentrations from 

5x1016 to 7x1018 cm-3 and also collected room-temperature PL spectra.  However, 

contrary to Yang et. al., they found the intensity of the YL to increase linearly as the Si 
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concentration increased and attributed the YL to acceptor impurities or compensating 

native defects (Schubert et. al., 1997).  Kwon et. al. doped GaN with Si concentrations 

from 2.0x1018 to 1.3x1019 cm-3 and collected PL spectra at 10 K.  They found the PL 

decay time to decrease with increasing Si concentration attributing a shallow Si donor to 

the YL DAP transition (Kwon et. al., 2000).  Xu et. al. grew unintentionally-doped n-

type GaN and performed temperature-dependent PL from 8 to 300 K and excitation 

intensity dependent PL over three orders-of-magnitude.  They concluded that the YL is 

caused by a DAdP transition at low temperatures and changes to a (e-Ao) transition as 

temperature is increased (Xu et. al., 2001). 

To summarize, a transition from a shallow donor to a VGa or VGa-related deep 

acceptor is commonly reported to cause the YL in GaN.  Many reports that have arrived 

at this conclusion concerning the nature of the YL in GaN considered the ratio of YL to 

UV (Do,X) peak intensities but not the typical DAP peak.  However, in the present study 

the 3.29 eV DAP peak, which is widely accepted to involve a shallow donor, quenches 

much more rapidly than the 2.2 eV YL band.  If the YL involved a shallow donor, its 

thermal characteristics would be similar to that of the 3.29 eV DAP peak.  One may 

therefore conclude that the YL band does not involve a shallow donor, but only deep 

energy levels. 

Having examined the electrical and optical properties of GaN implanted with Si at 

room temperature, the next few sections in this chapter will discuss the electrical and 

optical properties of GaN implanted with Si at a high temperature of 800 oC. 
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Silicon Implanted into GaN at 800 oC 

The primary motivation for implanting GaN above room temperature is to 

minimize implantation damage during ion implantation.  Fully removing implantation 

damage and activating implanted species in GaN are difficult because GaN begins to 

dissociate well below optimum anneal temperatures.  As the implantation temperature is 

increased, one would expect dynamic annealing during the implantation process to 

simultaneously recover a portion of the damage as well as activate some implants.  

Therefore, lower post-implantation anneal temperatures may be required to obtain the 

same level of damage recovery and implant activation compared with room-temperature 

implantation if hot-implantation is used.  To the best of our knowledge, no one has 

performed a comprehensive study examining the effects of hot implantation on the 

electrical activation of Si-implanted GaN.  Furthermore, preliminary reports on structural 

characterization of high-temperature implants in GaN are sometimes contradictory and 

often incomplete.  

In an attempt to better understand implantation damage, Liu et. al. found using 

RBS, XRD, and XTEM found that for a given ion species, amorphization of the 

implanted region occurs at lower doses as implantation temperature is reduced.  They 

recommended that improved dopant activation may be obtained by implanting at higher 

temperatures, which they showed reduced lattice distortion (Liu et. al., 1999).  However, 

electrical measurements are needed to confirm the effects of both low- and high-

temperature implantation induced defects on dopant activation. 

In a related report, possibly on the same samples as Liu, Wenzel et. al. used RBS 

spectroscopy to characterize implanted GaN but reported no electrical measurements.  Ca 
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and Mg were implanted from 25 to 550 oC into MBE-grown GaN at doses from 1x1014 to 

5x1015 cm-2, and annealed at 1150 oC for 15 s in flowing N2.  Contrary to Liu’s 

conclusion, Wenzel contends that damage (specifically point defects) was proportional to 

the mass of the ion species, implant dose, and implant temperature; and was independent 

of ion current.  Therefore, to avoid certain point defects, they oppugn that implantation 

should be completed at room temperature rather than higher temperatures (Wenzel et. al., 

1999). 

Parikh et. al. implanted 160 keV Si+ with doses from 1x1014 to 1x1015 cm-2 at 

room temperature and 550 oC into GaN, and annealed with a face-to-face proximity cap 

in Ar ambient at 1000 oC for 60 s.  As-grown and implanted samples were characterized 

by RBS, PL, and XTEM.  Reportedly, even the highest dose produced little damage when 

implanted at 550 oC according to RBS spectra.  As expected from dynamic annealing, 

hot-implantation produced less damage than the corresponding room-temperature 

implantation.  Although damage was partially recovered on all annealed samples, on even 

the lowest dose, the characteristic band-edge PL emission at 3.46 eV was lost (Parikh et. 

al., 1997).  As already seen from the PL spectra in this current study, this was likely due 

to their 1000 oC anneal being too low to adequately recover from the implantation 

damage.  

Room-Temperature Hall Effect Measurements. 

GaN wafers capped with 500 Å AlN were implanted at 800 oC with 200 keV Si 

ions with doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1050 to 1350 oC 

from 5 min to 17 sec in a flowing nitrogen environment.  The sheet carrier concentrations 

as determined from room-temperature Hall effect measurements on this set of samples 
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are shown in Figure 44.  Data from a representative sample implanted at 800 oC with 200 

keV Ar ions at a dose of 1x1015 cm-2 shows the effect of the hot implantation on the 

GaN background carrier concentration.  Data from unimplanted samples annealed from 

1250 to 1350 oC are also included for comparison to show the effects of high-temperature 

annealing on the GaN background carrier concentration.  The electron concentration is 

dependent upon implantation dose and annealing temperature, and increases steadily up 

through 1350 oC for each of the six doses.  Compared to the samples implanted at 25 oC 

(see Fig. 27), the carrier concentrations of the three lowest dose samples implanted at 800 

oC are much greater and much less dependent on anneal temperature.  Sheet electron 

concentrations on these samples annealed from 1250 to 1350 oC fall within a relatively 

narrow range of 4x1013 to 1x1014 cm-2.  An interesting observation is that if a fixed 

background concentration of 3.98x1013 cm-2 were subtracted from each of these 

measurements, the resulting carrier concentrations would be remarkably similar to those 

of the corresponding samples implanted at room temperature.  For this reason, it was 

suspected that this high background electron concentration was somehow caused by the 

hot implantation process itself.  However, samples implanted at 800 oC with Argon and 

annealed at 1350 oC for 17 sec exhibited an electron concentration of only 8.98x1011 

cm-2—over 40 times less than expected to account for the high concentrations on the Si-

implanted samples.  The simplest explanation is that the Ar was not actually implanted at 

800 oC, but perhaps only room temperature.  Thus, without further study it remains 

unclear why the three lowest dose samples implanted with Si at 800 oC have such high 

carrier concentrations. 
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Figure 44. Room-temperature sheet electron concentrations for GaN implanted at 800 oC 
with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1050 
to 1350 oC from 5 min to 17 sec in a flowing nitrogen environment. 
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Figure 45 shows the electrical activation efficiency for all Si-implanted samples 

using a corrected dose after accounting for the AlN cap.  Generally, for the three highest 

doses, the higher the dose, the greater the activation efficiency at any given anneal 

temperature.  The highest dose of 5x1015 cm-2 displays fair activation (17%) even after 

annealing at only 1050 oC for 5 min and excellent activation (~ 97%) after annealing at 

just 1250 oC for 18 sec.  This is one of the highest reported activation efficiencies for Si 

implanted at a dose of 5x1015 cm-2.   This exceeds the activation of the room-temperature 

implanted sample in this study for the same dose and anneal conditions by over 20%.  

Most interesting are the activation efficiencies greater than 100% for the lowest two 

doses.  After annealing from 1250-1350 oC, the samples implanted with doses of 1x1013 

and 5x1013 cm-2 have average activation efficiencies of 442% and 137%, respectively.  

Table 7 compares the carrier concentrations and electrical activation efficiencies at these 

two lowest doses if a fixed background concentration of 3.98x1013 cm-2 were subtracted 

from the measurements on samples implanted at 800 oC.  The corrected 800 oC activation 

efficiency is remarkably similar to the room-temperature implantation electrical 

activation efficiency.  Despite the fact that the data from the samples implanted with Ar 

at 800 oC do not provide evidence that such a large background electron concentration 

results from the 800 oC implantation, the implantation process is still suspect.  Figure 46 

shows sheet carrier concentration versus actual implantation dose.  The 100% electrical 

activation line clearly shows the lower doses exceeding 100% activation, then falling 

below 100% as dose is increased only to approach 100% at the higher doses.  Such  

behavior strongly suggests a nearly constant background concentration whose effect 

becomes less significant as the dose is increased. 
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Figure 45. Electrical activation efficiency for GaN implanted at 800 oC with 200 keV Si 
ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed from 1050 to 1350 oC for 
5 min to 17 sec in a flowing nitrogen environment. 
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Table 7. Hall Effect Data for Si-implanted GaN at 25, 800, and 800 oC Corrected 

Anneal 
Condition 
(oC/ time) 

RT 
Sheet 
Conc. 
(cm-2) 

Hot 
Sheet 
Conc. 
(cm-2) 

Corrected 
Hot 

Sheet 
Conc. 
(cm-2) 

RT 
Act. 
Eff. 
(%) 

Hot 
Act. 
Eff. 
(%) 

Corr. 
Hot 
Act. 
Eff. 
(%) 

Nominal dose of 1 x 1013 cm-2, Actual dose of 9.51 x 1012 cm-2 into GaN 
1250/ 21s 1.16 x 1011 3.99 x 1013 1.00 x 1011 1 419 1 
1300/ 22s 1.73 x 1012 4.19 x 1013 2.10 x 1012 18 441 22 
1350/ 17s 4.00 x 1012 4.43 x 1013 4.50 x 1012 42 466 47 

Nominal dose of 5 x 1013 cm-2, Actual dose of 4.75 x 1013 cm-2 into GaN 
1250/ 21s 6.23 x 1012 5.22 x 1013 1.24 x 1013 13 110 26 
1300/ 22s 1.79 x 1013 6.32 x 1013 2.34 x 1013 38 133 49 
1350/ 17s 3.02 x 1013 8.02 x 1013 4.04 x 1013 64 169 85 

 

Figure 47 shows the electron Hall mobility for all six doses as well as for 

unimplanted GaN as a function of anneal temperature.  The mobilities increase 

considerably with anneal temperature up to 1350 oC for all doses.  After annealing at 

1350 oC, the mobility values are higher for the lower doses.  The highest mobility 

obtained at room temperature is greater than 180 cm2/V·s on the sample with the lowest 

dose of 1x1013 cm-2, while the lowest mobility of 100 cm2/V·s was found on the sample 

with the highest dose of 5x1015 cm-2. 

Edwards et. al. implanted semi-insulating GaN at 300 oC with Si at a total dose of 

4.4x1014 cm-2 and annealed at 1150 oC for 2 min in a SiC-coated graphite susceptor in an 

N2 ambient.  Dividing the measured room-temperature sheet carrier concentration by the 

implantation dose resulted in 27% electrical activation and a mobility of 55 cm2/V·s.  By 

comparison, the sample implanted at 800 oC with Si at a dose of 5x1014 cm-2 and 

annealed at 1150  oC for 5 min in this study had only 8% electrical activation and a 

mobility of 20 cm2/V·s (Edwards et. al., 1997).  However, many reports such as Edwards’  
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Figure 46. Sheet carrier concentration versus actual implanted dose for GaN implanted at 
800 oC with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 
1050 to 1350 oC from 5 min to 17 sec in a flowing nitrogen environment. 
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Figure 47. Room-temperature Hall mobility for GaN implanted at 800 oC with 200 keV 
Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1050 to 1350 oC 
from 5 min to 17 sec in a flowing nitrogen environment. 
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lack sufficient depth to report optimization trends.  A complete picture can only be 

realized by systematic investigation.  In this study, annealing a sample with the same 

implantation conditions (5x1014 cm-2, 800 oC) at 1350 oC for 7 sec resulted in 78% 

electrical activation and a mobility of nearly 120 cm2/V·s. 

Table 8 compiles the data from Figs. 44-47, and adds sample sheet resistivity. Just 

like the samples implanted at room temperature, the mobilities and carrier concentrations 

increase with anneal temperature for every dose in spite of the increased ionized impurity 

scattering from an increased number of active donors.  Similarly, this trend suggests that 

substantial damage is being removed at each successive anneal up to 1350 oC and that 

even further damage recovery and electrical activation are possible for anneals beyond 

1350 oC. 

Temperature-Dependent Hall Effect Measurements. 

The sheet carrier concentrations determined from temperature-dependent Hall 

measurements from 10 to 800 K for a sample at each of the six doses annealed at 1350 oC 

for 17 sec are shown in Figure 48.  The carrier concentration of the unimplanted sample 

annealed at 1300 oC for 9 sec is also shown in the figure.  The scale of the 1000/T axis is 

split at 20 K-1 (50 K), and an expanded 1000/T scale is used for greater clarity in the 

regime where sheet carrier concentration is most sensitive to temperature.  The carrier 

concentrations for each dose kept increasing as temperature increased above about 200 K 

and showed no signs of saturation even at a sample temperature of 800 K, exhibiting the 

same behavior as the samples implanted at 25 oC.  A temperature-independent carrier 

concentration due to the degenerate impurity band is seen on all samples for T < 50 K.  

The concentration of this degenerate band on the lowest two doses is significantly higher  
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Table 8. Room-Temperature Hall Effect Data for Si implanted into GaN at 800 oC 

Implant 
Dose 

(cm-2) 

Implant 
Temp. 
(oC) 

Anneal 
Condition 
(oC/ time) 

Sheet 
Resistivity 

(W/□) 

 
Mobility 
(cm2/V·s) 

Sheet 
Conc. 
(cm-2) 

Activation 
Efficiency 

(%) 
       

1 x 1015 800 1350/ 21s 43,920 158.4 8.98 x 1011 Argon 
       

1 x 1013 800 1250/ 21s 1,334 117.5 3.99 x 1013 419 
1 x 1013 800 1300/ 22s 1,009 147.9 4.19 x 1013 441 
1 x 1013 800 1350/ 17s 768.6 183.2 4.43 x 1013 466 

       
5 x 1013 800 1250/ 21s 966.8 123.8 5.22 x 1013 110 
5 x 1013 800 1300/ 22s 649 152.2 6.32 x 1013 133 
5 x 1013 800 1350/ 17s 451.6 172.5 8.02 x 1013 169 

       
1 x 1014 800 1250/ 21s 703.5 120.3 7.39 x 1013 78 
1 x 1014 800 1300/ 22s 457.4 152.2 8.97 x 1013 94 
1 x 1014 800 1350/ 17s 366.9 162.1 1.05 x 1014 110 

       
5 x 1014 800 1100/ 5m 833,000 16.5 4.77 x 1011 0.1 
5 x 1014 800 1150/ 5m 8,190 20.3 3.75 x 1013 8 
5 x 1014 800 1200/ 5m 850.1 60.7 1.21 x 1014 26 
5 x 1014 800 1250/ 19s 223.9 99.1 2.82 x 1014 59 
5 x 1014 800 1300/ 22s 183.7 102.3 3.33 x 1014 70 
5 x 1014 800 1350/ 7s 144.9 116.7 3.70 x 1014 78 

       
1 x 1015 800 1250/ 21s 178.2 72.0 4.87 x 1014 51 
1 x 1015 800 1300/ 22s 98.1 101.6 6.27 x 1014 66 
1 x 1015 800 1350/ 17s 62 104.2 9.68 x 1014 102 

       
5 x 1015 800 1050/ 5m 552.4 14.2 7.95 x 1014 17 
5 x 1015 800 1100/ 5m 168.8 25.7 1.44 x 1015 30 
5 x 1015 800 1150/ 5m 53.7 43.5 2.67 x 1015 56 
5 x 1015 800 1200/ 5m 29.6 61.0 3.46 x 1015 73 
5 x 1015 800 1250/ 18s 15.27 88.3 4.63 x 1015 97 
5 x 1015 800 1300/ 9s 13.04 104.6 4.58 x 1015 97 
5 x 1015 800 1350/ 17s 11.73 99.8 5.34 x 1015 112 
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Figure 48. Temperature-dependent sheet electron concentrations from 10-800 K for GaN 
implanted at 800 oC with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 
and annealed at 1350 oC for 17 sec in a flowing nitrogen environment. 
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than on the corresponding samples implanted at 25 oC.  It was suspected that this is due to 

the hot implantation inducing a donor-like defect sheet concentration of about 4x1013 

cm-2.  However, data from samples implanted with Ar at 800 oC show a room- 

temperature sheet electron concentration of only 8.98x1011 cm-2, which is comparable to 

the sheet concentration from the sample implanted with Ar at room temperature. 

Using the same graphical technique to determine the Si ionization energy as used 

for the 25 oC-implanted samples, the results for each of the 800 oC-implanted samples 

annealed at 1350 oC for 17 sec are shown in Figure 49.  The data used in the least squares 

fit were taken at sample temperatures from 360-800 K.  The extracted apparent ionization 

energies vary significantly from 0.6 to 32 meV, but consistently decrease as the 

implantation dose is increased.  The relatively low apparent ionization energies measured 

on the samples with the highest three doses are attributed to the formation of a degenerate 

impurity band from the bulk of the Si-implanted region.  The relatively high apparent 

ionization energies measured on the samples with the lowest two doses is attributed to the 

effect of a deeper level donor activation that becomes dominant at higher sample 

temperatures once the shallow Si donors are all ionized.   

Figure 50 shows the temperature-dependent Hall mobility for the same set of 

samples discussed in Figures 48 and 49.  The peak mobilities decrease from 192 to 108 

cm2/V·s as the implantation dose is increased from 1x1013 to 5x1015 cm-2.  This is mainly 

due to increased ionized impurity scattering.  The peak mobilities of the two lowest doses 

are lower than those from the corresponding 25 oC implanted samples due to greater 

ionized impurity scattering.  The peak mobilities, carrier concentrations, and extracted  
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Figure 49. Measured ionization energies for GaN implanted at 800 oC with 200 keV Si 
ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 17 sec in a 
flowing nitrogen environment. 
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Figure 50. Temperature-dependent Hall mobility from 10-800 K for GaN implanted at 
800 oC with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 
1350 oC for 17 sec in a flowing nitrogen environment. 
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ionization energies for the other four doses are comparable to those implanted at room 

temperature.  Unlike the samples implanted at 25 oC, the low-temperature mobility 

(shown in the inset), does not vary as nicely with implantation dose, although it is still 

temperature independent.  The mobilities at 10 K range from 72 to 108 cm2/V·s.  As the 

dose is increased from 1x1013 to 1x1014 cm-2, the low-temperature mobility decreases 

from 84 to 72 cm2/V·s, then as the dose is further increased to 5x1015 cm-2, the mobility 

values monotonically increase to 108 cm2/V·s.  This reversal in the trend of mobility with 

dose may be related to the exceptionally high carrier concentration seen on the samples 

implanted with the three lowest doses.  Because all of the samples are degenerate, they all 

exhibit a temperature-independent carrier concentration and mobility at low temperature. 

The temperature-dependent sheet resistivity from 10-800 K for the same set of 

samples annealed at 1350 oC for 17 sec is shown in Figure 51.  As the implantation dose 

is increased from 1x1013 to 5x1015 cm-2, the room-temperature resistivity decreases 

proportionally from 770 to 12 W/□.  As the dose is increased and the samples become 

increasingly more degenerate, the resistivity curves become more temperature-

independent.  Unlike its room-temperature counterpart, the sample implanted with a dose 

of 1x1013 cm-2 shows no evidence of a deeper donor level that becomes dominant above 

300 K.  This is most likely due to the relatively large carrier concentration on this sample 

drowning out any such effect.  The samples implanted with the three highest doses, 

whose carrier concentration and mobility vary little with temperature, have resistivities 

that are relatively temperature independent.  The resistivity for all implantation doses 

increases in the high-temperature region as the carrier concentration·mobility product 

decreases as seen and discussed on the samples implanted at room temperature.   
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Figure 51. Temperature-dependent sheet resistivity from 10-800 K for GaN implanted at 
800 oC with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 
1350 oC for 17 sec in a flowing nitrogen environment. 
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Low-Temperature Photoluminescence. 

The reader is referred to Fig. 39 and the associated discussion for the PL spectra 

taken at 3 K for the as-grown and unimplanted GaN annealed from 1250 to 1350 oC.  The 

PL spectra taken at 3 K for GaN implanted at 800 oC with 200 keV Si ions at doses 

ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 17 sec in a flowing 

nitrogen environment are shown in Figure 52.  In general, these spectra show a (Do,X) 

peak at 3.485 eV, a DAP peak at 3.28 eV with phonon replicas, and a broad YL band 

centered at 2.2 eV.  Also shown in Fig. 52 is the spectrum for the unimplanted sample 

annealed at 1350 oC for 17 sec, whose intensity has been reduced by a factor of 5.  The 

intensity of the (Do,X) peaks from each Si-implanted spectrum except for the highest 

dose has also been reduced by a factor of 5 for easier viewing and comparison.  All 

spectra reveal a (Do,X) peak that decreases in intensity and broadens with increasing 

dose.  The near band-edge broadening begins on the low energy side of the (Do,X) peak 

in the sample implanted with a dose of 1x1013 cm-2 and is due to band tailing.  Band 

tailing is observed from the lowest dose sample implanted at 800 oC, because even this 

sample is degenerate.  However, both 25 oC- and 800 oC-implanted samples exhibit the 

onset of band filling at a dose of 5x1014 cm-2, where the free carrier concentrations of 

both samples are approximately equal.  Luminescence from the band tailing and filling is 

most intense on the sample implanted with a dose of 5x1015 cm-2, and produces a very 

broad band-to-band transition extending from 3.1 to 3.7 eV, as seen in the 25 oC-

implanted sample. 

 The (Do,X) and DAP peaks are the most intense on the sample with the lowest 

dose.  As the dose increases from 1x1013 to 1x1014 cm-2, the zero-phonon DAP peak blue  
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Figure 52. PL spectra taken at 3 K for GaN implanted at 800 oC with 200 keV Si ions at 
doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 17 sec in a 
flowing nitrogen environment. 
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shifts 4 meV.  This shift is less than that seen in the 25 oC-implanted samples because the 

increase in carrier concentration over the same dose range is less.  Identical to the spectra 

from the 25 oC-implanted samples, all evidence of DAP transitions have disappeared on 

the spectra from the two highest doses because the donor band has merged with the 

conduction band.  After annealing at 1350 oC, the unimplanted GaN has nearly 8 times 

the DAP intensity that the sample implanted with a dose of 1x1013 cm-2 has.  However, 

the sample implanted with a dose of 1x1013 cm-2 has nearly 7 times the (Do,X)  intensity 

and over 150 times the sheet carrier concentration that the unimplanted sample has. 

Except for the lowest dose spectrum, the intensity of the YL band is weaker on 

the 800 oC-implant samples compared to the corresponding 25 oC-implanted samples.  

The YL intensity increases as the dose is increased from 1x1013 to 1x1014 cm-2 then 

decreases more rapidly as the dose is increased further.  Although the Hall effect 

measurement data were examined in an attempt to find a correlation between the 

observed intensities of the YL, it is unclear what factors determine the various intensities 

of the YL.  Despite a small ambiguity introduced by the Fabry-Pérot oscillations, the YL 

appears to peak at 2.2 eV independent of implantation dose. 

The sharpness (FWHM of about 11 meV) and intensity of the exciton peak from 

lowest dose sample correlate well with the peak mobility of nearly 200 cm2/V·s obtained 

on this sample.  Both the exciton peak and the high mobility indicate excellent 

implantation damage recovery resulting from annealing low-dose Si-implanted GaN at 

1350 oC for 17 sec.  Overall, the features of the low-temperature PL spectra are well 

correlated with the Hall effect measurements as a function of implantation dose for 

samples implanted at 800 oC and annealed at 1350 oC for 17 sec. 

 169



The PL spectra taken at 3 K for GaN implanted at 800 oC with 200 keV Ar ions 

with doses ranging from 1x1013 to 1x1015 cm-2 and annealed at 1350 oC for 22 sec in a 

flowing nitrogen environment are shown in Figure 53.  In general, these spectra show a 

(Do,X) peak at 3.487 eV, a DAP peak at 3.28 eV with phonon replicas, and a broad YL 

band centered near 2.2 eV.  Also shown in Fig. 53 is the spectrum for the unimplanted 

sample annealed at 1350 oC for 17 sec, whose intensity has been reduced by a factor of 

10.  The intensities of all three luminescence features from the Ar-implanted samples are 

the strongest on the sample implanted with the lowest dose.  As the dose increases, the 

intensity of the (Do,X) peak, the DAP peak, and the broad YL band all decrease. 

Temperature-Dependent Photoluminescence. 

Temperature-dependent PL spectra from GaN implanted at 800 oC with 200 keV 

Si at a dose of 1x1013 cm-2 and annealed at 1350 oC for 17 sec in a flowing nitrogen 

environment are shown in Figure 54.  The three features shown in the spectra are a 

(Do,X) peak, a DAP peak with phonon replicas, and a YL band with Fabry-Pérot 

interference reflections.  The sharp and intense (Do,X)  peak at 3.485 eV decreases 

monotonically, broadens, and red-shifts by about 56 meV as temperature increases from 3 

to 300 K.  This red-shift is due to the thermal characteristics of the GaN bandgap which 

decreases by about 66 meV over the same temperature range.  The intensity of the DAP 

peak at 3.287 eV and its phonon replicas also decrease monotonically as temperature 

increases, maintaining 43% and less than 1% of its original intensity at 100 and 200 K, 

respectively, but totally disappearing above 200 K.  This temperature dependence, similar 

to that seen on the 3.29 eV DAP peak in the sample implanted with Si at room 

temperature (Fig. 43), is attributed to the ionization of the shallow Si donor.  The  
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Figure 53. PL spectra taken at 3 K for GaN implanted at 800 oC with 200 keV Ar ions at 
doses ranging from 1x1013 to 5x1015 cm-2 and annealed at 1350 oC for 22 sec in a 
flowing nitrogen environment. 
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Figure 54. Temperature-dependent PL spectra (3-300 K) from GaN implanted at 800 oC 
with 200 keV Si at a dose of 5x1013 cm-2 and annealed at 1350 oC for 17 sec in a flowing 
nitrogen environment. 
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intensity of the broad YL band behaves very differently than that of the (Do,X)  and DAP 

peaks dropping to only about 50% of its low-temperature value at 300 K.  As the 

temperature is increased from 3 to 300 K, the peak position of the YL band red-shifts 

about 12 meV from 2.218 to 2.206 eV, similar to the 13 meV red-shift observed on the 

RT-implanted sample.  Although this red-shift is not as large as the bandgap reduction 

with temperature, it is noticeably different from the 50 meV blue-shift seen on the GL 

band in the spectra from the Mg-implanted samples.  This YL also quenches less rapidly 

with temperature than does the GL band.  This behavior indicates a deeper level, less 

susceptible to thermal ionization, is responsible for the YL band.  A more detailed 

discussion of the nature of the YL band in Si-doped GaN was found in the section on 

temperature-dependent PL of GaN implanted at room temperature.  To summarize, the 

3.29 eV DAP peak, which is widely accepted to involve a shallow donor, quenches much 

more rapidly than the 2.2 eV YL band.  If the YL involved a shallow donor, its thermal 

characteristics would be similar to that of the 3.29 eV DAP peak.  One may therefore 

conclude that the YL band does not involve a shallow donor, but only deep energy levels. 

 
Comparison of GaN Implanted with Si at Room Temperature and 800 oC 

 The room-temperature sheet electron concentrations for GaN implanted at 25 and 

800 oC with 200 keV Si ions at doses ranging from 5x1014 to 5x1015 cm-2 and annealed at 

1050 to 1350 oC from 5 min to 17 sec in a flowing nitrogen environment are shown in 

Figure 55.  The concentrations of the sample implanted at 800 oC with a dose of 5x1015 

cm-2 is an average of 44% greater than the concentrations of the corresponding sample 

implanted at room-temperature over all anneal temperatures.  Although this difference  
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Figure 55. Room-temperature sheet electron concentrations for GaN implanted at 25 and 
800 oC with 200 keV Si ions at doses ranging from 5x1014 to 5x1015 cm-2 and annealed at 
1050 to 1350 oC from 5 min to 17 sec in a flowing nitrogen environment. 
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seems significant, it is not repeated for the next two lower doses.  At doses of 5x1014 and 

1x1015 cm-2, the concentrations of the samples implanted at room temperature are on 

average 6 and 26% larger, respectively, than the samples implanted at 800 oC.  The 

concentrations of the other samples were not compared because of the inexplicably large 

concentrations on the samples implanted at 800 oC for these lower doses.  Overall, the 

concentration versus anneal temperature trend over all doses for the samples implanted at 

room temperature appears more well-behaved than that at 800 oC. 

 Figure 56 shows the room-temperature Hall mobility for the same set of samples 

examined in the previous figure.  For nearly every dose and anneal temperature the 

mobility values of the samples implanted at 800 oC are larger than those implanted at 

room temperature.  At a dose of 5x1015 cm-2, the trend is consistent and averages to 26% 

larger.  Figure 57 compares the PL spectra taken at 3 K for samples implanted with the 

lower doses ranging from 1x1013 to 1x1014 cm-2 and annealed at 1350 oC for 17 sec.  As 

seen previously, the primary features of these spectra are a (Do,X) peak, a DAP peak with 

phonon replicas and a broad YL band.  In each case, samples implanted at room 

temperature show lower (Do,X) intensity (except for the 1x1014 cm-2 dose), higher DAP 

intensity, and higher YL intensity (except for the 1x1013 cm-2 dose).  Thus, for certain 

applications Si implantation into GaN at 800 oC may be worthwhile for the higher carrier 

concentrations and mobility values, though the improvement is not decisive and 

somewhat inconsistent.  
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Figure 56. Room-temperature Hall mobility for GaN implanted at 25 and 800 oC with 
200 keV Si ions at doses ranging from 5x1014 to 5x1015 cm-2 and annealed at 1050 to 
1350 oC from 5 min to 17 sec in a flowing nitrogen environment.
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Figure 57. PL spectra taken at 3 K for GaN implanted at 25 and 800 oC with 200 keV Si 
ions at doses ranging from 1x1013 to 1x1014 cm-2 and annealed at 1350 oC for 17 sec in a 
flowing nitrogen environment.
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VII. Conclusions and Recommendations 

 
 The primary objective of this research was to perform a comprehensive and 

systematic electrical activation study of Si-implanted GaN as a function of ion 

implantation dose, anneal temperature, and implantation temperature.  A secondary 

objective was to investigate acceptor-implanted GaN.  Both objectives were pursued with 

a goal to increase understanding of the implant activation process, and the defect levels 

associated with this process so that ion-implanted GaN can be exploited in advanced 

electrical and optical device applications.  Each of these goals and objectives were 

accomplished. 

GaN wafers capped with 500 Å AlN were implanted at room temperature and at 

800 oC with 200 keV Si ions at doses ranging from 1x1013 to 5x1015 cm-2 and annealed 

from 1050 to 1350 oC for 5 min to 17 sec in a flowing nitrogen environment.  Room- 

temperature Hall effect measurements were performed to determine sheet resistivity, Hall 

mobility, sheet carrier concentration, and electrical activation efficiency.  Variable 

temperature Hall effect measurements were taken from 10 to 800 K to determine the Si 

ionization energy and to further assess the resistivity, mobility and carrier concentration.  

Photoluminescence (PL) spectra were collected at 3 K and also as a function of 

temperature from 3 to 300 K to identify various implant and defect energy levels, to 

assess crystal lattice recovery, and to determine the nature of observed luminescence 

bands.  The carrier contribution from residual implantation defects and/or defects 

thermally generated by the high-temperature annealing were evaluated by characterizing 

Ar-implanted and unimplanted GaN.  The PL spectra and Hall effect results from both Si- 
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and Ar-implanted GaN as well as unimplanted GaN were correlated to provide a 

synergistic understanding of Si activation.  Additionally, GaN wafers capped with 500 Å 

AlN were implanted at 25, 500, and at 800 oC with Mg, Mg+Si, Mg+C, Mg+P, Mg+O, C, 

Li, and Li+P at doses ranging from 1x1014 to 5x1015 cm-2 and annealed from 1100 to 

1350 oC for 20 min to 17 sec in a flowing nitrogen environment.  Similarly, variable 

temperature Hall effect measurements and PL spectra were collected to electrically and 

optically characterize the implanted and annealed samples.  The results of these efforts 

follow. 

1) Exceptionally good electrical activation efficiencies of Si-implanted GaN were 

obtained.  Generally, the higher the dose, the greater the activation efficiency at any 

given anneal temperature.  A 100% electrical activation was obtained for the sample 

implanted with a dose of 1x1015 cm-2 and annealed at 1350 oC for 17 sec, which is the 

highest electrical activation to be reported for this dose.  The sample implanted with the 

highest dose of 5x1015 cm-2 displays significant activation (> 20%) even after annealing 

for only 1100 oC for 5 min and an excellent activation (~ 90%) after annealing at both 

1300 oC for 23 sec and 1350 oC for 17 sec.  This is also one of the highest reported 

activation efficiencies for Si implanted at this dose.  Even the sample implanted with the 

lowest dose of 1x1013 cm-2 and annealed at 1350 oC for 17 sec shows an unprecedented 

electrical activation of 40%. 

2) Outstanding mobility values were obtained from Si-implanted GaN.  The 

mobility generally increased with increasing anneal temperature and with decreasing 

dose.  The highest room-temperature mobility obtained is 250 cm2/V·s on the sample 

implanted at room temperature with the lowest dose of 1x1013 cm-2 after annealing at 
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1350 oC for 17 sec.  Even the sample implanted at 800 oC with the highest dose of 5x1015 

cm-2 had a remarkable room-temperature mobility of 105 cm2/V·s after annealing at 1300 

oC for 9 sec.  These mobility values are much higher than those reported elsewhere on 

samples implanted at the same dose.  Except for the lowest two doses at an anneal 

temperature of 1350 oC, the samples implanted at 800 oC typically had slightly higher 

mobilities than those implanted at room temperature. 

3) Optimum annealing conditions were identified for Si-implanted GaN as a 

function of implantation dose.  Based on electrical activation efficiency, the optimum 

anneal temperature appears to be around 1350 oC for the samples implanted with the two 

highest doses of 1x1015 and 5x1015 cm-2.   For the samples implanted with a dose of 

5x1014 cm-2 or lower, the electrical activation efficiencies show no signs of saturating 

even after annealing at 1350 oC.  Also, the mobilities continue to increase with anneal 

temperature for these doses in spite of the increased ionized impurity scattering from an 

increased number of active donors.  This trend suggests that although substantial damage 

has been removed at each successive anneal up to 1350 oC, even further damage recovery 

and electrical activation may be possible for anneals beyond 1350 oC.  This is especially 

true for the three lowest doses from 1x1013 to 1x1014 cm-2. 

4) An improved annealing technique was developed to minimize dissociation of 

the GaN surface and maximize sample survival even for anneal temperatures as high as 

1350 oC and durations of several minutes above 1200 oC.  After experiencing the onset of 

GaN decomposition at anneal temperatures as low as 1100 oC with a GaN proximity cap, 

an AlN thermal encapsulant was deposited post-implantation.  When the survival rate of 

this AlN encapsulant was less than 50% after annealing at 1200 oC for 20 min, an AlN 
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cap grown in-situ with the GaN was adopted.  Tests results showed that AlN grown 500 

Å thick at 100 oC had greater thermal integrity than either AlN grown 1000 Å thick or 

AlN grown at 750 oC.  The thinner cold-growth AlN survived open face anneals at 1250 

oC for 20 sec but was destroyed at 1300 oC.  The method finally adopted was holding 

these cold-growth AlN-capped samples tightly face-to-face with 5 mil Ta wire, by which 

they consistently survived anneals up to 1350 oC for 22 sec.  Aside from the implantation 

itself, it is crucial to keep the AlN surface as free from contamination as possible. 

5) Hall effect data were correlated with PL spectra to show the anneal temperature 

dependence on the relationships between carrier concentration, mobility, damage 

recovery, and impurity band formation.  The PL spectrum from the sample implanted 

with Si at room temperature with a dose of 1x1013 cm-2 annealed at 1250 oC shows only 

a weak DAP peak and almost no (Do,X) or YL activity.  However, after annealing at 

1300 oC, the (Do,X) peak increases by almost a factor of 8, and the DAP and YL peaks 

increase by around a factor of 2.  As the anneal temperature is increased further to 1350 

oC, the (Do,X) peak increases by almost a factor of 60, while the DAP and YL peaks 

increase by factors of almost 6 and 5, respectively.  As anneal temperature was increased 

to 1300 and then to 1350 oC, the carrier concentration increased by factors of about 18 

and 2, respectively.  Also, as anneal temperature was increased to 1350 oC the mobility 

increased by more than 80%.  This confirms that the improvements in PL spectral 

intensity after annealing at 1300 and 1350 oC are attributed to both more Si activation and 

further lattice damage recovery. 

6) Data showed that Si implantation at 800 oC offers no decisive advantages over 

implantation at room temperature.  Although Si implantation at 800 oC generally resulted 
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in slightly higher electrical activation efficiencies and mobilities, these data were not 

consistent across all doses and anneal temperatures. 

7) Temperature-dependent PL spectra provided evidence that the YL plaguing 

nearly all Si-doped GaN is not caused by a shallow Si donor, but rather a much deeper 

level.  In samples implanted with Si at both room temperature and 800 oC, the 3.29 eV 

DAP peak, which is widely accepted to involve a shallow donor, quenches much more 

rapidly than the 2.2 eV YL band.  If the YL involved the same or a similar shallow donor, 

its thermal characteristics would be similar to that of the 3.29 eV DAP peak.  One may 

therefore conclude that the YL band does not involve a shallow donor, but only deep 

energy levels. 

8) A study of PL spectra showed that the formation of Mg-related deep complexes 

are mainly responsible for the inefficient activation of Mg acceptors implanted into GaN.  

All of the Mg-implanted and most of the Mg-coimplanted GaN samples became 

extremely resistive, and did not show definite p-type conductivity even after annealing at 

1350 oC for 17 sec.  Furthermore, the samples did not show any p-type conductivity and 

remained highly resistive even at a sample temperature as high as 800 K.  Because of the 

excellent mobility and band-edge luminescence of the Si-implanted samples after 

annealing at 1350 oC, it is unlikely that the Mg-implanted samples are significantly 

compensated by residual lattice damage.  Instead, Mg probably formed deep complexes 

as evidenced by a dominant green luminescence (GL) band in the PL spectra of all Mg 

implanted samples.  The GL band could be due to a transition from a deep donor-to-deep 

acceptor (DdAdP) with at least one of these levels caused by a Mg-related complex.  

These Mg-related deep complexes form independent of the 25, 500, or 800 oC 
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implantation temperature and remain thermally stable even at anneal temperatures as high 

as 1350 oC, indicating a very high binding energy.  The GL band was also present in 

samples implanted with Mg-alone after annealing at just 1050 oC for 15 s, indicating a 

very low formation energy.  Furthermore, these complexes form independent of and 

despite various coimplants designed to control stoichiometry (P and C coimplantation) or 

enhance p-type conductivity by forming reactive donor-acceptor dipole pairs (Si or O 

coimplantation).  The GL band is predominantly seen in acceptor implanted GaN; in 

almost no circumstances has the PL spectrum of a p-type in-situ Mg-doped sample been 

reported to show a GL band, but typically only a BL band.  Therefore, the Mg-related 

deep complex responsible for the GL is much more energetically favorable than isolated 

MgGa, and can be attributed to deep complexes formed between Mg and implantation 

and/or other defects.  The intensity of the deep donor-deep acceptor pair (DdAdP) GL 

band relative to the 3.28 eV DAP is reduced only in samples implanted with Mg+Si.  

However, in this case Mg can also be compensated by shallow Si donors, in addition to 

forming deep complexes. 

9) Temperature-dependent Hall (TDH) measurements identified a Si ionization 

energy of 15 meV on the sample implanted with a dose of 1x1013 cm-2, very similar to 

that reported for in-situ Si-doped GaN at about the same volume concentration.  TDH 

measurements also revealed a deep donor in the unimplanted MBE-grown GaN samples 

having an ionization energy of about 190 meV. 

Through this study to understand ion implanted GaN, some areas of further 

research have been identified.  Unlike Si-implanted GaAs, which shows higher Si 

activation at lower implantation doses, Si-implanted GaN experiences lower Si activation 
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for lower implantation doses.  Because the mobility and carrier concentrations of the 

lower dose Si-implanted GaN in this study had not yet peaked after annealing at 1350 oC 

for 17 sec, annealing at 1400 oC or at longer times for lower anneal temperatures should 

identify the optimum annealing conditions for the lower dose implantations.  Although 

initial data indicate that the 800 oC implantation is not responsible for the apparent 400% 

electrical activation in the samples implanted with Si at a dose of 1x1013 cm-2, hot Ar 

implantation should be repeated as the implantation is still suspected.  Additional studies 

on Mg-implanted GaN are needed to find the optimum ion implantation and annealing 

conditions for successful p-type doping.  Implanting Mg and Ar at various doses into in-

situ Mg-doped GaN epilayers having various background hole concentrations is 

recommended.  Any changes in the hole concentration after annealing these samples can 

be correlated with the intensity of the GL band and attributed to the implantation process.  

This should identify the Mg dose or concentration at which the GL begins to appear and 

help isolate the cause of the GL, thus preventing Mg–related complexes from forming 

and optimizing Mg electrical activation efficiency.  Furthermore, implanting Mg at 

various doses into GaN epilayers grown under different conditions or techniques (e.g., 

MBE, MOCVD, HVPE, ELOG) should help determine the best GaN layers to optimize 

p-type conductivity.  There is also much understanding to be gained from performing 

similar studies on donor- and acceptor-implanted AlxGa1-xN.
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Appendix A 

 
Publication Summary 

The following is a complete list of publications resulting from this doctoral research.  The 

list is divided into three sections: journal articles, refereed conference proceedings, and 

presentations.  Papers labeled as “to be submitted” have already been prepared in draft 

form. 

Journal Articles: 

“Electrical activation studies of GaN implanted with Si from low to high dose,” Fellows 
J., Yeo Y.K., Hengehold R., and Johnstone D., submitted to Appl. Phys. Lett., 2001. 
  
Refereed Conference Proceedings: 

“Optical Characterization of Mg- and Si-Implanted GaN,” Fellows J., Yeo Y.K., 
Hengehold R., and Krasnobaev L., Mat. Res. Soc. Symp. Proc., Vol 680E, E7.1.1-E7.1.6, 
San Francisco, CA (2001). 
 
“Electrical and Optical Studies of Si-implanted GaN,” Fellows J., Yeo Y.K., Hengehold 
R., and Krasnobaev L., to be submitted, Mat. Res. Soc. Symp I, November 26-30, Boston, 
MA (2001). 
 
Presentations: 

“Optical Characterization of Mg- and Si-Implanted GaN,” Fellows J., Yeo Y.K., 
Hengehold R., and Krasnobaev L., Mat. Res. Soc. Symp. E, April 16-20, San Francisco, 
CA (2001). 
 
“Electrical and Optical Studies of Si-implanted GaN,” Fellows J., Yeo Y.K., Hengehold 
R., and Krasnobaev L., to be presented, Mat. Res. Soc. Symp I, November 26-30, Boston, 
MA (2001). 
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Appendix B 

 
Sample Cutting and Cleaning Procedures 

Cleanroom: 
1. Turn solvent hood hotplate ON and set to 100 oC. 
2. Place clean 3” Si wafer face-up on hotplate. 
3. Place as many 1¼” ceramic cutting disks face-down on hotplate as you have source 

wafers to cut. 
4. Label a glassine envelope for each 5 mm x 5mm sample you expect to cut. 
5. Place source wafer on appropriate-sized spinner vacuum chuck, spin wafer and clean 

with acetone, methanol, blow dry w/N2. 
6. Cover entire surface of source wafer with 1813 photoresist using dropper and spin on at 

4000 rpm for 30 sec. 
7. Place PR covered wafer face up on Si wafer for 4 min. 
8. At 4 min mark, flip source wafer over and melt crystal bond onto backside ensuring edge 

from which samples will be cut has full coverage.  Note: avoid getting crystal bond on Si 
wafer—this will make the mounting process go much smoother. 

9. Immediately touch the face of a 1¼” ceramic cutting disk to the crystal bond coated 
wafer surface and lift.  If wafer is stuck to Si wafer, carefully loosen with tweezers and 
reattempt bonding.  If wafer bonds to disk, set aside to cool.  Uniquely identify each 
ceramic disk. *** Write down which disk has which source wafer!!! *** 

10. Repeat steps 5-9 for each source wafer to be cut. 
11. Place all mounted wafers in transport box along with tweezers, crystal bond, and the 

brass mounting ring. 
12. Turn OFF hotplate and remove Si wafer. 
13. Place Si wafer on appropriate-sized spinner vacuum chuck, spin wafer and clean with 

acetone, methanol, blow dry w/N2. 
 
Wiresaw: 

14. Carry box to wire saw room and turn on hotplate in fume hood on very lowest 
temperature.  

15. Ensure there is adequate distilled drip water for wire saw. 
16. Securely mount a disk on the wire saw pedestal. 
17. Align wire parallel to sample edge to be cut so that wire is just barely not touching 

sample. 
18. Once wire and sample are properly aligned, activate and zero the sliding micrometer. 
19. Lower saw swing arm and slide sample tray until micrometer reads ± 5.18 mm. 
20. Set appropriate drip rate; position drip spot over sample and wire. 
21. Turn ON saw motor, and set to 50%. 
22. Cut sample slice. When wire is almost through sample minimize pressure between 

sample and wire to prevent uneven cutting or chipping of sapphire substrate. 
23. Lower swing arm, turn saw to 0%. 
24. Secure swing arm, remove ceramic disk and place face-up on hotplate until the next 

wafer has been cut. 
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25. Repeat steps 16-24 for next source wafer to be cut. 
26. Once crystal bond has been sufficiently softened on previously cut wafer, carefully 

remove the portion of source wafer that will not be cut into samples, remembering its ID. 
27. Repeat steps 16-23 for each strip that will be cut into square samples; make initial wire 

alignment with the end of the strip that is closest to the center of the grown wafer—in 
some cases this requires remembering the location of the wafer flat. 

28. After each square sample is cut, zero the micrometer and slide the sample tray ± 5.18 mm 
until end of strip is reached; continue until all samples are cut, keeping careful track of 
which pieces belong to which wafer. 

29. Lower and secure saw swing arm, turn OFF saw; turn OFF hotplate. 
 
Cleanroom: 

30. Return to cleanroom and turn solvent hood hotplate ON and set to 100 oC; Place all 
cutting disks face-up on hotplate 

31. Set out as many 2” diameter pitri dishes with covers as you have source wafers and fill 
each ~⅓ full w/ acetone. 

32. Once crystal bond has been sufficiently softened, carefully remove each sample and place 
all pieces from each source wafer in their own pitri dish  *** Organization is crucial to 
keeping track of which samples are which! *** 

33. Once all the pieces are soaking in covered dishes of acetone, turn OFF the hotplate. 
34. Add DI water to each dish with a ratio of acetone:DI of about 3:1 to aid in removing the 

ceramic disk residue. 
35. Fill the ultrasonic cleaner with DI water to the level of fluid in each pitri dish. 
36. Place each dish in the ultrasonic cleaner simultaneously ONLY if you can tell them apart, 

and ultra for 20 seconds. 
37. Remove dishes from the cleaner; carefully flush each dish with clean acetone and cover. 
38. Clean each piece one at a time—holding with tweezers, rinse with acetone, methanol, and 

DI water, blowing dry w/N2 and immediately placing in the appropriate glassine envelop 
prepared beforehand. 

39. Once all the samples and remaining source wafers (and remnants) have been cleaned and 
packaged, clean all quartzware with acetone and methanol--wiping will likely be 
necessary due to the PR, crystal bond and ceramic residue. 

 

Oxy-Gon Sample Preparation Procedures 

1. Select all the 5 mm x 5mm samples (which were previously cut & cleaned) you’ll anneal. 
2. On the cleanroom table, place a clean 3” Si wafer on a cloth wipe. 
3. While holding them face down on the Si wafer, uniquely scribe the Al2O3 backside of 

each sample type (e.g., “ / “, “ < ”, “ | “, “O”, “L”, etc.) 
4. Logically (e.g. hot and cold of same dose) and physically (e.g., best size match) pair up 

the samples. 
5. After scribing, place all samples to be annealed in a 2” pitri dish for temporary storage 

and transport. 
6. Measure out ~ 1¾” of Ta-wire for each sample pair to be annealed, cutting one long 

piece. 
7. Place this single piece of Ta-wire in a 2” pitri dish, submerge the wire in TCE, and cover 

the dish. 
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8. Clean all samples again (front and back) with acetone and methanol rinses (and, as 
necessary to fully remove ceramic disk residue and make each surface mirror-like, DI 
H2O), blow dry with N2. 

9. Rinse and flush the Ta-wire in the dish with acetone, then methanol.  While still wet, pull 
the wire between a clean cloth wipe to dry. 

10. Cut the wire into 1¾” sections. 
11. Identify which samples will be wrapped face-to-face noting which sample will be on top. 
12. Note: Practicing this process several times on a pair of junk samples is recommended. 
13. Place a piece of Ta-wire on a cloth wipe and center the face-to-face samples in the middle 

of the wire. 
14. Using two sets of tweezers, press the center of the samples together while wrapping the 

ends of the wire up and back across the top of the samples. 
15. Bend first one end of the wire 90o at the center of the samples across the other wire, then 

bend the other end 90o so they interlock (like string on a Christmas package, or twine on 
a bail of hay). 

16. Flip the sample pair over and repeat steps 14-15. 
17. Flip the sample pair over and repeat steps 14-15 again, at which point you should have 

just enough wire to complete the final bends (step 15), only here interlock the ends and 
bend 180o vice 90o. 

18. Keep the samples fully face-to-face throughout the process and wrap them securely.  Any 
uncovered regions along the edge will be destroyed by the anneal—the samples must 
overlap perfectly! 

19. Place the sample pair in the glassine envelope of the sample that started (and finished) on 
top. 

20. Repeat steps 13-19 for each sample pair. 
21. Place all the glassine envelopes in a plastic box and double bag for transport to anneal 

furnace. 
22. Be sure to bring tweezers, gloves, wipes, and a metal dish for transport to/from the 

furnace. 
 

Oxy-Gon AlN/GaN Anneal Procedures  

System Start-Up (process selection switch should be in STANDBY): 
1. Turn ON 80 psig house air (vent and vacuum valves are air pressure activated) 
2. Turn ON Main Power switch (handle on lower front panel) 
3. Turn Roughing pump ON (green button); Roughing pulls on Turbo to 10-3 Torr 
4. Turn Turbomolecular pump ON (green button); Turbo pulls on itself 
5. If chamber is still under a vacuum, turn process selection switch to VENT GAS, else 

GOTO 8 
6. Turn ON low-O2 N2 at tank and regulator; ensure ball valve on furnace works 
7. When chamber reaches atmospheric pressure, Turn OFF low-O2 N2 or Ar at tank and 

regulator 
8. Open chamber, propping door open with ruler as necessary 
9. Inspect graphite elements and electrodes for discoloration/wear; carefully wipe off any 

condensation or residue from walls 
10. Remove previous samples as necessary and insert new samples evenly spaced in center 

of puck, then secure chamber door 
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Soft Bake (to remove impurities from hot zone): 
11. Turn process selection switch to STANDBY, then ROUGH 
12. Turn ON Ion Gauge Controller to read TCs 
13. Rough pump until chamber is mid 10-2 Torr (read TC2); this will take a few minutes; 

Turbo still pulls on itself, and pressure increases slightly at TC1 
14. Turn process selection switch to HI VACUUM (Turbo pulls on chamber, Rough pulls on 

Turbo—TC2 drops quickly; TC1 increases then drops more slowly) 
15. To remove trapped O2 between GaN samples, Repeat steps 5 through 7 only, and begin 

again at step 11 
16. Turn ON Ion Gauge Filament when TC2 is in the10-3 Torr range, & pump until mid-high 

10-5 Torr 
17. After ~10 min into 2nd Hi-vac pull, Open H2O inlet and outlet hand valves (only when 

chamber under vac. or filled with N2) 
18. Ensure yellow H2O handles are open: 2, 4 & Chamber Main at 45o, 1 & 3 at full open, 

and H2O safety light is ON. 
19. RESET Over Temperature Controller to start pre-anneal soft bake of elements and 

chamber 
20. Ensure Vacuum Interlock Bypass is OFF, Turn Heat Zone ON 
21. Approx. 5 min after H2O on, ion gauge should be mid-hi 10-5 Torr; Ramp Up 

AUTO/MAN power controls to 20%  
22. Soft Bake chamber at 20% for 12 min (expect T to be approx. 230 oC; if significantly 

less, TC may be bad—abort run ***) 
23. Ramp Down AUTO/MAN power controls to 8% and continue softbake for another 5 

min 
24. Ramp Down AUTO/MAN power controls to 0% 
25. Turn OFF Ion Gauge Filament (Heat Zone may go off simultaneously) ensuring P ~mid-

hi 10-5 Torr 
 
Set-Up Anneal Environment: 

26. Turn ON low-O2 N2 or Ar at tank and regulator 
27. Turn process selection switch to VENT GAS to backfill chamber to ~1 PSIG 
28. Adjust vent floating ball valve so that chamber gas is just barely flowing 

 
Anneal Process: 

29. Turn ON Vacuum Interlock Bypass (and turn ON Heat Zone as necessary) 
30. Ramp Up AUTO/MAN power controls for desired temperature profile (55% initially for 

graphite to minimize excessive current, then gradually up to 69% max at T ≥ 1150 oC to 
maximize ramp rate).  Carefully control power to not overshoot. 

31. ANNEAL GaN samples 
32. At appropriate time, Ramp Down AUTO/MAN power controls to 0% 
33. Using floating ball valve, gently increase vent gas flow rate to the 10-15 lpm range 
34. Turn OFF Heat Zone 10 min into cool-down (after power supply has cooled) on last run 
35. Turn OFF Turbo during last run of the day 
36. Close H2O inlet and outlet hand valves, respectively, when T<100 oC 
37. When chamber reads T<30 oC (for AlN/GaN), Close floating ball valve, Turn OFF low-

O2 N2 at tank and regulator 
38. If annealing more samples, GOTO 8 
39. Open chamber, propping door open with ruler as necessary, carefully remove samples, 

then secure chamber door 
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System Shut Down: 

40. Turn process selection switch to STANDBY, then ROUGH 
41. Rough pump until TC2 ~ mid 10-2 Torr, if Turbo is still on, Turn process selection switch 

to HI VACUUM until TC2 ~10-3 
42. If short term shut down (< 1 day), Turn process selection switch to STANDBY, Turn 

OFF Turbo, GOTO 45 
43. Turn process selection switch to VENT GAS, and Open floating ball valve to backfill 

chamber to ~1 PSIG 
44. Close floating ball valve; Turn process selection switch to STANDBY 
45. Turn OFF vent gas at tank and regulator 
46. Turn OFF Vacuum Interlock Bypass 
47. Turn OFF Roughing pump 
48. Turn OFF Ion Gauge Controller 
49. Turn OFF Main Power switch 
50. Turn OFF 80 psi house air 

 

Post-Anneal Contact Preparation Procedures 

1. Obtain HCl and HNO3 acids and place within the acid fume hood. 
2. Turn ON one solvent fume hood hotplate and set to 140 oC. 
3. Turn ON the second solvent fume hood hotplate and set to 90 oC. 
4. On the cleanroom table, place an annealed Ta-wire-wrapped sample pair on a clean cloth 

wipe. 
5. Using two sets of tweezers, carefully break off the brittle Ta wire-wrap, keeping track of 

which sample is which throughout the process. 
6. Visually examine the AlN surface for signs of Ga droplets, cracking/peeling etc.  (A good 

AlN surface post anneal will be as mirror-like as when it was wrapped.) 
7. If the identifying scribe markings on the backside are no longer clearly distinguishable (at 

any angle or over a reflective Si wafer) place the sample on a clean 3” Si wafer and re-
scribe. 

8. Place the samples in a 2” pitri dish for temporary storage and transport. 
9. Fill a clean 250 ml quartz beaker with 50 ml of DI H2O; cover and place on the 140 oC 

hotplate. 
10. Repeat steps 4-8 for each sample pair you have annealed. 
11. Weigh out 1.63 g of KOH pellets (86% KOH) and tightly close the double bag. 
12. Quickly place all pellets into the beaker of hot DI H2O as the pellets will begin to melt in 

air. 
13. Stir with tweezers until all pellets are fully dissolved and cover the beaker.  (Although the 

hotplate is set at 140 oC, the DI H2O will not boil, typically reaching at most 95 oC.) 
14. *** Note: ensure the evaporator is not in use before proceeding with any acid processing.  
15. Measure out 30 ml of HCl and place in a clean 250 ml quartz beaker. 
16. Measure out 10 ml of HNO3 and add to the HCl; gently circulate and cover the aqua 

regia. 
17. Process ONLY the good morphology samples as the first batch (< 5-10% total metallic 

Ga surface area is good).  Process all other samples in the second batch. 
18. Place each sample in the 0.5M hot KOH solution; starting a 5 min timer on the first 

sample. 
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19. Continue placing samples one at a time at the same rate in the KOH sequentially along 
the circumference of the beaker and cover when finished. 

20. When the samples have only 1 min left in the KOH, bring the covered beaker of aqua 
regia to the solvent fume hood and place on the 90 oC hotplate. 

21. At 5 min, remove the samples at the same rate and in the same order in which you 
inserted them. 

22. As each sample is removed, place it into a large (600 ml) beaker of clean DI H2O. 
23. Carefully rinse the samples in the beaker by dumping most of the DI/adding clean DI, 

dumping/adding—taking care to not even come close to loosing any samples.  Leave at 
most 1” of DI in beaker. 

24. When the aqua regia just begins to boil, place the samples into the acid solution directly 
from the DI beaker; starting a 2 min timer on the first sample. 

25. Continue placing samples one at a time at the same rate in the aqua regia sequentially 
along the circumference of the beaker and cover when finished. 

26. At 2 min, remove the samples at the same rate and in the same order in which you 
inserted them. 

27. As each sample is removed, place it into a large beaker of clean DI H2O. 
28. When all the samples are in the DI, cover the aqua regia and turn off the 90 oC hotplate. 
29. At this point, you may need to rinse a green residue off the metal tweezers, wipe, rinse 

and blow dry with N2 
30. Carefully rinse the samples in the beaker by dumping most of the DI/adding clean DI, 

dumping/adding—taking care to not even come close to loosing any samples.  Leave at 
most 1” of DI in beaker. 

31. Holding with tweezers, agitate each sample in the DI, remove, blow dry with N2 and 
place in a clean 2” pitri dish. 

32. Repeat steps 18-31 for the second batch as necessary using the same acid and base 
solutions. 

33. On the cleanroom table, carefully mount all samples face down on the van der Pauw 
shadow mask on a clean cloth wipe. 

34. Adjust and secure each sample by gently tightening mounting screws until all samples are 
positioned for contacts as much in the corners as possible. 

35. Note: Each row on the mask is a different sized square; generally the largest two square 
rows are best. 

36. *** Note: This is an iterative and tedious process as tightening one sample may loosen 
another. *** 

37. When all samples are securely squared, vent the evaporator and carefully insert the mask. 
38. Remember to change the microscope window slides, check metal levels, secure door and 

“process”. 
39. Turn off both hotplates, clean up all acids, bases, DI, Ta-wire-pieces, etc. 

 
 
Edwards Auto 306 Evaporator Procedures 

Sample preparation: 
1.  Degrease sample with solvents (acetone, methanol) DI rinse and N2 blow dry. 
2.  Remove any oxides with 2 min of boiling aqua regia (HNO3:HCl, 1:3), DI rinse and N2 blow 
dry. 
 
Vent chamber, Mount/Remove sample & Create vacuum: 
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1.  Ensure chamber is not in use and has been cooled for at least ½ an hour after the last 
evaporation. 
2.  Press “Seal/Vent” and lift chamber clip—door will open easily at 7.6E2 Torr—not until! 
3.  When vented, open chamber door and remove sample jig—if removing, do so & go to Step 7. 
4.  Mount cleaned sample(s) properly on jig 
5.  Physically verify the metals in each carousel positions and note for assigning layer 
parameters. 
6.  Check amount of metal in hearths to be used and fill only as necessary—half full is OK. 
7.  Insert jig into chamber, and secure door. 
8.  Press “Process” to start vacuum. 
9.  Fill liquid N2 reservoir to improve pump-down time. 
10.  Confirm metal parameters on each layer to be used (density, tooling, z-factor, etc.).   
11.  Program the thickness for each layer in nm. 
 
Evaporation: 
1.  Wait until vacuum ≤ 2x10-7 Torr is obtained. 
2.  Turn electron Gun Power Supply ON. 
3.  Turn gun and on/off ON, and wait for lights (Power, Vac, H2O, Rot, Gun, Local, and Beam). 
4.  Check ~4.85 kV high voltage setting and 15-17 oC water chiller. 
5.  Using Data button, select appropriate layer and confirm settings changing as necessary. 
 

 Ti Al Au Ni 
Layer 1 3 2 4 

Density 4.5 2.7 19.3 8.91 
Z-factor 14.1 8.2 23.2 26.6 
Tooling 0.85 0.85 0.85 0.85 

Beam for evap 120 mA 45 mA 100 mA 120 mA 
 
6.  Ensure shutter is closed and no shutter control buttons are pushed. 
7.  Activate Beam Sweeping by setting control knob to “1”. 
8.  Turn Beam Current control knob to 1st notch (~ 20 mA). 
9.  Slowly ramp Beam Current up in 20 mA steps every several seconds, monitoring vacuum 
pressure—don’t let pressure exceed 1x10-5 Torr. 
10.  If metal has not been used recently, evaporate off impurities by getting metal liquid hot 
(i.e., at the onset of evaporation—watch for solid to liquid phase change) otherwise go to step 12. 
11.  As necessary, allow chamber to return to 2x10-7 Torr, then repeat starting at step 9. 
12.  Stop ramping Beam Current when desired beam current is achieved, or turn down if 9x10-6 
Torr is exceeded. 
13.  Arm shutter by depressing Remote button 
14.  Press “Run” to open shutter and start evaporation, noting start time. 
15.  Watch deposition rate and pressure; modify Beam Current to keep both within proper 
limits. 
16.  Log time when deposition completes. 
17.  Turn Beam Current down slowly (2-3 seconds) to zero. 
18.  Activate Carousel and move to position of next metal, else go to step 21 if done evaporating. 
19.  Using Data button, select appropriate layer and confirm settings changing as necessary. 
20.  Go to Evaporation step 8 when chamber returns to 2x10-7 Torr 
21.  Deactivate Beam Sweeping, Carousel, and disarm shutter Remote. 
22.  Turn gun and on/off OFF, turn Gun Power Supply OFF. 
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23.  Log evaporation results into the Evaporation log book. 
24.  Wait at least ½ hour and follow vent procedures. 
 
 
Photoluminescence Procedures 

Mounting and Inserting Samples: 
1. Mount up to three 5 mm x 5 mm samples on each side of copper block using dot of rubber 
cement on top back. 
2. Carefully slide rod into chamber, reconnect TC gauge wire; secure w/clamp. 
3. When sample chamber is already under a vacuum: 
 Close valve on top Cu pipe to sample chamber. 
 Connect pressurized He line to small red lever and open valve. 
 Undo clamp on sample rod.  When chamber is pressurized w/He, cap will pop. 
 Complete steps 1 & 2 above. 
 Close small red lever; open valve on top Cu pipe, turn off He tank & disconnect line. 
 
Initial Start-up (everything at 760 Torr and room temperature): 
1. Turn on roughing pump to rough out vacuum jacket through dormant turbo, ensuring valve to 
jacket is open. 
2. When jacket < 100 mm Hg, turn on turbo pump on top shelf (after ~ x hours of roughing). 
3. When jacket < 2 mm Hg, turn on big roughing pump at wall to rough sample chamber (~ x hrs 
of turbo). 
4. Ensure vacuum release valve is closed (black knob by chamber gauge) and open valve on top 
Cu pipe. 
5. Purge LHe reservoir w/pressurized He: 

Connect He gas tank to inlet of LHe reservoir; 
Open black knob at top of chamber & put “+” pressure into resvr; 
Close black knob & open valve on bottom Cu pipe (rough pump pulls on LHe resvr & 
pump gurgles); Close bottom pipe valve. 

6. Perform step 5 three times to fully purge LHe resvr. 
7. Open black knob at top of chamber & put “+” pressure into resvr again. 
8. Open needle valve to pull pressurized He through sample chamber (pump will gurgle); close 
needle valve. 
9. Close vacuum jacket valve to turbo just before adding LN2 to avoid cryo-pumping through 
turbo into jacket 
10. Dump LN2 into LN2 resvr maintaining “+” pressure on LHe resvr. 
11. Test needle valve to ensure free LHe flow to chamber (pump gurgles). 
12. When LN2 resvr is full and stops bubbling over, close black knob to LHe resvr & disconnect 
He gas tank 
13. Wait at least 3 hours and top off LN2 resvr before adding LHe to resvr. 
 
Adding LHe: (everything under a vacuum and LN2 reservoir full for > 3 hours) 
1. Position LHe dewar and Connect He gas tank to dewar; turn on LHe meter. 
2. Open top dewar valve and insert transfer tube to LHe level (watch dewar pressure and add as 
necessary). 
3. When LHe begins to “puff” from transfer tube, insert into LHe resvr inlet; remove rubber 
stop on exhaust. 
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4. Dewar pressure determines transfer rate.  Test needle valve to ensure free LHe flow to 
chamber (pump gurgles).  
5. When meter reads appropriate LHe level, quickly raise dewar tube above LHe level. 
6. Quickly pull LHe resvr tube fully out and cap with valve fixture. 
7. Store transfer tube, close dewar valve, disconnect He tank; replace rubber stop on LHe resvr 
exhaust. 
8. Adjust needle valve so that sample chamber pressure ~ 23 mm Hg to begin cooling samples, 
monitor TA, TB. 
 
System Start-up (everything under a vacuum and LN2 & LHe reservoirs full): 
1. Start N2 purge: open N2 tank & set flow to ~5 on GF-1 unit. 
2. Turn yellow H2O lever on; turn chiller power on, press green start button. 
3. Put on appropriate safety goggles; turn on laser warning light. 
4. Turn key on argon ion laser controller, ramp up current to ~50 A, wait until laser is visible. 
5. Set laser output power to appropriate wattage. 
6. Ensure LN2 dewar is full and pressurized (5-8 psi) 
7. Turn on PMT cooling system; set to –40 oC. 
8. After PMT is cooled, set HV to 1700 V from within SPEX PC program. 
9. Run test spectra to check noise level in PMT. 
 
Collect Spectra (when laser power, sample temp, and PMT temp are at appropriate levels): 
1. T = 3K spectra requires TA ~5.7 K and TB ~ 1.8 K (chamber pressure will be ~18-23 mm Hg) 
2. Set slits appropriately (100-400 mm) depending on sample intensity & resolution desired. 
3. Illuminate sample & send reflected beam into corner of sample dewar before window to 
spectrometer. 
4. Select a spectral feature & optimize luminescence intensity into spectrometer by laterally 
adjusting 2nd lens. 
5. Run scan using SPEX program (3.6-1.8 eV, 2 Å step, 0.05 s integration). 
 
Varible Temperature Spectra: 
1. Run lowest temp spectra first, then collect spectra as T increases. 
2. Adjust needle valve to stablize at T < 100 K. 
3. Adjust needle valve and sample heater to stablize at T > 100 K. 
 
Varible Power Spectra: 
1. Set laser for highest power spectra into sample dewar; measure w/meter; collect spectra. 
2. Set up neutral density filters just before sample dewar; use UV ND filters to collect lower 
power spectra. 
 
System Shut-down: 
1. Close needle valve to LHe resvr. 
2. Turn laser power down to zero; turn key off; wait 10 min & turn chiller off and H20 off. 
3. Turn N2 purge gas tank off. 
4. Turn off PMT HV from within SPEX PC program. 
5. Turn off PMT cooling system. 
6. Ensure pressure release valve on LN2 dewar is closed. 
7. Close shutter to spectrometer entrance to keep dust out. 
8. Top off LN2 resvr if you want to keep vacuum jacket at usable vacuum level. 
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Cathodoluminescence Procedures 

1.  Ensure both Spectrometer computers are turned ON 
2.  Check chamber pressure with ion guage (nominally 1.6x10-6 Torr), then turn OFF ion gauge 
so filament light doesn’t corrupt CL signal. 
 
CAUTION:  Should have P~10-6 Torr prior to turning on gun or cooling samples to maintain 
cathode life and prevent condensation on samples.  Chamber can get to 10-7 Torr range after 
pumping overnight, can get to 1.2x10-7 Torr after weeks of pumping. 
 
PMT and electron gun start-up: 
 
3.  Turn ON PMT cooler (set for -40 to –35 oC) 
4.  Turn ON Stanford high voltage for PMT (trip ON) 
5.  Turn ON Gamma box with single toggle 
6.  Turn ON Kimball unit (turn key and light 4 buttons) 
7.  Set Beam Energy to 5 keV 
8.  Close Faraday cup to monitor Beam Current 
9.  Slowly ramp source current UP in 0.5 A increments every several seconds until cup current 
reaches desired level.  Note: Kimball Source Current = 2.43 A at E=10 keV, T=10 K for 50 mA. 
10.  Wait for spectrometer scan to stabilize at noise level (10-5 mA) before collecting spectra 
 
Low-temperature set-up (do this in parallel with PMT and electron gun start-up): 
 
11.  Plug in heater to prevent icing at tip exhaust 
12.  Slowly lower transfer tube down into He tank ensuring pressure 5-8 psi 
13.  Open shield and tip flow valves two full turns (Note: T may go up beginning to drop ~ 20 
min later) 
14.  Insert transfer tube into the He tank as necessary and adjust flow valves to maintain 10-12 K 
temperature (nominal flow meter readings of 3) 
 
Shut down: 
 
1.  Pull transfer tube above liquid level in He tank.  Caution: Do not break seal and lose pressure.  
2.  Close flow meter valves finger tight 
3.  Turn OFF PMT cooler 
4.  Turn OFF Stanford high voltage for PMT (trip OFF) 
5.  Slowly ramp source current Down to 0 A in 0.5 A increments every several seconds 
6.  Set Beam Energy to 0 keV 
7.  Turn OFF Kimball unit (4 buttons ending with “power” and turn key OFF) 
8.  Turn OFF Gamma box with single toggle 
9.  Leave spectrometer computers ON 
10.  Turn monitor OFF 
11.  Unplug heater after chamber T=100 K 
 
Vent chamber, change samples and reload: 
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CAUTION: Ensure chamber is at room temperature and electron gun is fully OFF for at least 1 
hour. 
 
1.  Toggle stop switch on 450 Turbo pump 
2.  If green lights on vent valve controller don’t come on after 2 minutes, cycle power to vent 
valve controller 
3.  Place magnet on fitting and open valve (Turbo pump winds down, keep magnet there so N2 
can vent chamber) 
4.  Disconnect Temperature gauge and Tip exhaust from heater/sample holder 
5.  Pull cold finger out holding heater down while waiting for vacuum to break 
6.  Place finger on top of chamber depressing the end of transfer tube 
7.  Once vacuum breaks, close vent valve using magnet and return magnet to holder 
8.  Carefully pull sample holder straight out of chamber 
9.  Change out samples using sharp stick to apply rubber cement to back of samples 
10.  Replace sample holder carefully, lowering without pinching the two O-rings 
11.  Manually switch roughing pump ON (it will beep and chug) 
12.  Replace cold finger carefully into chamber top all the way and tighten a couple of threads 
13.  Wait for TCs to read in the low 10-3 Torr range, then turn roughing pump switch OFF 
14.  Turn ON Turbo pump at front panel (yellow light on) 
15.  Turn ON ion gauge to confirm vacuum is building (P<10-3 Torr) 
16.  Turn OFF ion gauge and TC should read 1x10-3 Torr 
 
Increase pressure in He tank then change when empty: 
 
1.  Change fitting on vent valve to accept small tube on standing He tank 
2.  Add He until pressure on main He tank reads 6-8 psi 
3.  Close vent valve, close standing tank valve, and remove flex tube 
4.  Repeat steps 2 and 3 once more when pressure and flow become too low 
5.  Replace standard fitting on vent valve  
6.  Vent main He tank when T begins rising and main tank pressure is < 1 psi, 
7.  Remove transfer tube 
8.  Close both tank valves, and label as residue 
9.  Clean frost off transfer tube, close vent valves, open top valve and insert transfer tube 
maintaining < 10 psi  
10.  Secure transfer tube with brass fittings and clamp at proper height 
 
Collect spectra: 
 
1.  Ensure PMT T ~  –38 to –40 oC  and spectrometer noise level has stabilized in 10-5 mA range 
2.  Ensure sample T is stable at desired measurement T 
3.  Ensure Beam Energy, all slits, and Beam Current are at desired levels at measurement T 
4.  Position E beam on sample center using X & Y controls; adjust Focus as necessary to control 
beam size/shape 
5.  If not already known, set scan parameters (F4) and run a quick spectrum (20 Å steps) to 
identify largest peaks 
6.  Set spectrometer to look at the most intense energy/wavelength (F9) 
7.  Optimize signal at the peak E/l by adjusting lenses and X & Y controls; record max 
luminescence current 
8.  Set nominal scan parameters (3.6—1.8 eV at 2 Å step for GaN samples) and collect data 
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9.  Output all *.spt files to *.txt ASCII files and copy to A:\
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Appendix C 
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Figure 58. An empirical expression for the bandgap energy of GaN as a function of 
absolute temperature along with the associated graph of Eg versus T (Monemar, 1974).
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